[算法导论] 85.最大矩形

这篇博客介绍了如何解决最大矩形问题,分别探讨了暴力枚举、单调栈常数优化以及单调栈结合左右边界数组的解决方案。其中,单调栈的应用大大减少了时间复杂度,将问题转化为柱状图的最大矩形面积计算。
摘要由CSDN通过智能技术生成

0.题目

1. 暴力破解 枚举所有可能的矩形

最原始地,我们可以列举每个可能的矩形。我们枚举矩形 所有可能的左上角坐标和右下角坐标,并检查 该矩形是否符合要求 。然而该方法的时间复杂度过高,不能通过所有的测试用例,因此我们必须寻找其他方法。

我们首先计算出矩阵的每个元素的左边连续 1 的数量,使用二维数组 left 记录,其中 left[i][j] 为矩阵第 i 行第 j 列元素的左边连续 1 的数量。

随后,对于矩阵中任意一个点,我们枚举以 该点为右下角 的全 1 矩形

具体而言,当考察 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值