[nlp] GPT

本文介绍了GPT的联合训练任务,包括Next Token Prediction和Text Classification,详细阐述了GPT2和GPT3的改进,如参数量增加、zero-shot能力,并讨论了模型的微调和应用。
摘要由CSDN通过智能技术生成

一、联合训练任务

1.1 NTP(Next Token Prediction)

gpt预训练的一个目标函数有两个,第一个是基础的下一个词预测任务,选择一个K窗口,将窗口中的K个词的embedding作为条件去预测下一个词。

1.2 TC(Text Classification)

第二个是一个分类任务,一段话给一个标签,然后去预测这标签。

作为预训练微调时的目标函数是这两个函数的加权和。

他在下接下游任务的时候,是将输入放入到transformer的decoder中,跟bert一样,使用预训练的参数,然后将特征加入到后续的一个FFN中,如下图所示:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值