[论文笔记] BPC(bits per character)和BPW(bits per word)

BPC和BPW是衡量语言模型性能的指标,分别表示每个字符和每个单词的平均编码长度。BPC越小,表示模型对数据集的建模能力越强。BPW计算时考虑了平均单词长度。在评估英文模型时,BPW更常见,而中文模型则更适合用BPC。这些指标是评价模型质量的一部分,实际应用效果还需要综合其他因素判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BPC和BPW都是评估语言模型性能的指标:

BPC (Bits-Per-Character)

        BPC表示 每个字符的平均编码长度,计算公式为: BPC = 交叉熵损失失/ log(2)

        其中交叉熵损失是模型在数据集上的平均负对数似然。 BPC越小,表示模型对数据集的建模能力越强。

BPW (Bits-Per-Word))

        BPW表示 每个单词的平均编码长度,计算公式为: BPW =交叉熵损失失/ (log(2) * 平均单词长度)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值