【分布外检测】《Deep Anomaly Detection with Outlier Exposure》 ICLR‘19

本文探讨了Outlier Exposure(OE)技术在深度学习异常检测中的应用,通过引入异常数据来提高模型的泛化能力。实验涵盖了多分类任务和密度估计任务,如ImageNet和Pixel CNN++,并展示了OE如何提升模型性能。OE的优势在于其可扩展性和在不同任务中的有效性,但对分布的精确划分仍存在挑战。
摘要由CSDN通过智能技术生成

利用异常数据集训练异常检测器,这种方法称为异常暴露(Outlier Exposure,OE)。这使异常检测器能够泛化和检测未见的异常。在大量自然语言处理以及小规模和大规模视觉任务的广泛实验中,文章发现Outlier Exposure可显着提高检测性能。

Outlier Exposure

所谓异常暴露,就是给异常检测器引入异常数据,让模型能从已有的异常数据中获得启发,从而能泛化出未曾见过的异常。

这篇文章只有一个公式,即模型引入OE后的优化目标:
E ( x , y ) ∼ D in  [ L ( f ( x ) , y ) + λ E x ′ ∼ D out  OE  [ L O E ( f ( x ′ ) , f ( x ) , y ) ] ] \mathbb{E}_{(x, y) \sim \mathcal{D}_{\text {in }}}\left[\mathcal{L}(f(x), y)+\lambda \mathbb{E}_{x^{\prime} \sim \mathcal{D}_{\text {out }}^{\text {OE }}}\left[\mathcal{L}_{\mathrm{OE}}\left(f\left(x^{\prime}\right), f(x), y\right)\right]\right] E(x,y)Din [L(f(x),y)+λExDout OE [LOE(f(x),f(x),y)]]
其中第一项是 L \mathcal{L} L原模型在原任务上的优化目标,第二项 L O E \mathcal{L}_{OE} LOE

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值