python使用回溯算法求解N皇后问题

19世纪著名的数学家高斯于1895年提出该N皇后的问题,主要是在nxn的国际象棋棋盘上摆放n个皇后棋子,皇后棋子之间不能互相攻击,即其中任意两个皇后都不能处于同一行、同一列或同一斜线上。要给定n然后给出所有的放置方式:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在棋盘上如何放置棋子本身就是一种试探行为,当发现不符合放置规则的时候,就需要撤回所放置的妻子是一个正常操作,因此可以想到利用回溯算法来解决这个问题,由于最终需要输出所有放置方案,所以需要借助一个列表来表示每一行中皇后的位置,将第一行中皇后放置在第1列。

在放置每个皇后时候都需要判断是否会与已经放置的之前的皇后发生冲突,为了方便复用以及解耦,可以先定义一个判断函数,传入当前的坐标位置行数和列数,然后与返回列表中已经确定的皇后来进行逐个对比判断,如果产生冲突则由判断函数来返回false,表示此位置是不可以放置皇后的,而所谓冲突,就是不能同行、同列、同对角线,同行和同列会比较容易判断,对于同对角线如何判断会稍微麻烦一些。

判断同对角线,对于两个坐标(x1,y1)、(

n皇后问题是指在n×n的棋盘上放置n个皇后,使得皇后彼此之间不能相互攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上。 回溯算法是一种经典的解决此类问题的算法。其基本思想是通过深度优先搜索策略,逐步构建可行解,如果发现当前搜索路径无法构建出解,则返回上一层继续搜索,直到找到可行解或者搜索完所有可能的情况。 下面是Python实现n皇后问题回溯算法,并且以n=4为例进行说明: ```python def is_valid(board, row, col, n): # 判断当前位置是否可以放置皇后 # 检查当前列是否有皇后 for i in range(row): if board[i][col] == 1: return False # 检查左上方是否有皇后 i, j = row-1, col-1 while i >= 0 and j >= 0: if board[i][j] == 1: return False i -= 1 j -= 1 # 检查右上方是否有皇后 i, j = row-1, col+1 while i >= 0 and j < n: if board[i][j] == 1: return False i -= 1 j += 1 return True def backtracking(board, row, n, res): if row == n: # 已经找到一组解 res.append([''.join(['Q' if i==1 else '.' for i in row]) for row in board]) return for col in range(n): # 尝试在当前行的每个位置放置皇后 if is_valid(board, row, col, n): board[row][col] = 1 # 放置皇后 backtracking(board, row+1, n, res) # 继续搜索下一行 board[row][col] = 0 # 回溯,撤销皇后 return def solveNQueens(n): res = [] board = [[0] * n for i in range(n)] backtracking(board, 0, n, res) return res print(solveNQueens(4)) ``` 输出结果为: ``` [['..Q.', 'Q...', '...Q', '.Q..'], ['.Q..', '...Q', 'Q...', '..Q.']] ``` 其中,每个元素表示一组解,每行字符串表示棋盘上的一行,Q表示皇后,.表示空位。可以看到,对于n=4的情况,共有两组解。 具体实现中,is_valid函数用于判断当前位置是否可以放置皇后,backtracking函数则用于递归搜索所有可能的解。在backtracking函数中,首先判断是否已经找到一组解,如果已经找到,则将其加入结果集;如果没有找到,则在当前行的每个位置尝试放置皇后,并继续搜索下一行。如果当前搜索路径无法构建出解,则回溯并撤销当前放置的皇后,返回上一层继续搜索。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值