模拟退火算法(Simulated Annealing,SA)的全面讲解及python实现

  1. 抽象来源:美国物理学家Metropolis等人在1953年发表研究复杂系统,计算其中能量分布的文章时,使用蒙特卡洛模拟法计算多分子系统中分子能量分布。Kirkpatrick等人受其启发而发明了“模拟退火”这个名词,它模仿冶金过程中的退火原理,因为寻找问题的最优解(最值)即类似寻找系统的最低能量。因此系统降温时,能量也逐渐下降,而同样意义地,问题的解也“下降”到最值
  2. 核心思想:在冶金退火过程中,退火(annealing)现象指物体逐渐降温的物理现象,温度愈低,物体的能量状态会低,系统内部分子的平均动能逐渐降低,分子在自身位置附近的扰动能力也随之下降,即分子自身的搜索范围随着温度的下降而下降。足够低后,液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。但是,如果过程过急过快,快速降温(亦称「淬炼」,quenching)时,会导致不是最低能态的非晶形。利用该特性,我们可以对给定状态空间(待求解空间)内的某个状态产生函数(待求解函数)的最值进行求解。在高温状态下,由于分子的扰动能力较强,对较差状态(远离最值所对应的状态)的容忍性高,因此可以在给定状态空间内进行全局的随机搜索,从而有较高概率跳出局部极值。随着温度的逐渐下降,分子的扰动能力减弱,对较差状态的容忍性随之降低,导致此时的全局随机搜索能力下降,相应地对局部极值的搜索能力上升。综合整个退火过程,在理想情况下,最终解应该对应于给定状态空间内的最值。
  3. 物理过程图示:如下图所示,首先(左图)物体处于非晶体状态。我们将固体加温至充分高(中图),再让其徐徐冷却,也就退火(右图)。加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小(此时物体以晶体形态呈现)。

4. 最优化过程图示:想象一下如果我们现在有下面这样一个函数,现在想求函数的(全局)最优解。如果采用Greedy策略,那么从A点开始试探,如果函数值继续减少,那么试探过程就会继续。而当到达点B时,显然我们的探求过程就结束了(因为无论朝哪个方向努力,结果只会越来越大)。最终我们只能找到一个局部最后解B。模拟退火其实也是一种Greedy算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以上图为例,模拟退火算法在搜索到局部最优解B后,会以一定的概率接受向右继续移动。也许经过几次这样的不是局部最优的移动后会到达B 和C之间的峰点,于是就跳出了局部最小值B

5. 迭代公式:根据Metropolis准则,系统温度为T时,出现能量差为dE的降温概率为:

      (1)

这条公式就表示:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(因为退火的过程是温度逐渐下降的过程),因此

以该降温概率为基础,采用状态转移概率来表示对较差状态的容忍性:

       (2)

其中,为状态产生函数,因此。常数k通过改变温度T的取值范围而被忽略,即式(1)中的等效于式(2)中的T

注意:在求取最值的过程中,存在两类可接受解:

1)更优解---BS(较当前状态更加接近最值的状态);

2)容忍解---TS(较当前状态更加远离最值的解)。

前者的接受概率为1,后者的接受概率为状态转移概率p(∆f),且必须保证p(∆f)∈(0,1)

求最小值

求最大值

6. 算法简要总结(以求最小值为例):若(即移动后得到更优解),则总是接受该移动;若 (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)相当于上图中,从B移向BC之间的小波峰时,每次右移(即接受一个更糟糕值)的概率在逐渐降低。如果这个坡特别长,那么很有可能最终我们并不会翻过这个坡。如果它不太长,这很有可能会翻过它,这取决于衰减t值的设定。

算法流程:

7. 代码示例:

示例函数(求最大值):

完整代码:

import numpy as np
import matplotlib.pyplot as plt
import random


class SA(object):
   
def __init__(self, interval, tab='min', T_max=1000, T_min=1, iterMax=1000, rate=0.95):
       
self.interval = interval  # 状态空间,即解的搜索范围
       
self.T_max = T_max  # 温度上限
       
self.T_min = T_min  # 温度下限
       
self.iterMax = iterMax  # 定温内部迭代次数
       
self.rate = rate  # 退火降温速度
       
self.x_seed = random.uniform(interval[0], interval[1])
       
self.tab = tab.strip()  # 求解最大值还是最小值的标签:‘min','max'
        
self.solve()
       
self.display()

   
def solve(self):
        temp =
'deal_' + self.tab
       
if hasattr(self, temp):
            deal =
getattr(self, temp)  # 采用反射方法提取对应的函数
       
else:
           
exit(">>>tab标签传参有误:'min'|'max'<<<")
        x1 =
self.x_seed
        T =
self.T_max
       
while T >= self.T_min:
           
for i in range(self.iterMax):
                f1 =
self.func(x1)
                delta_x = random.random()*
2-1
               
if self.interval[0] <= x1+delta_x <= self.interval[1]:
                    x2 = x1 + delta_x
               
else:
                    x2 = x1 - delta_x
                f2 =
self.func(x2)
                delta_f = f2 - f1
                x1 = deal(x1, x2, delta_f, T)
            T *=
self.rate
       
self.x_solu = x1
       
self.f_solu = self.func(x1)

   
def func(self, x):
        value = np.sin(x**
2)*(x**2-5*x)
       
return value

   
def p_min(self, delta, T):
        probability = np.exp(-delta/T)
       
return probability

   
def p_max(self, delta, T):
        probability = np.exp(delta/T)
       
return probability

   
def deal_min(self, x1, x2, delta, T):
       
if delta < 0:
           
return x2
       
else:
            p =
self.p_min(delta,T)
           
if p > random.random():
               
return x2
           
else:
               
return x1

   
def deal_max(self, x1, x2, delta, T):
       
if delta > 0:
           
return x2
       
else:
            p =
self.p_max(delta, T)
           
if p > random.random():
               
return x2
           
else:
               
return x1

   
def display(self):
       
print(f'seed: {self.x_seed}\nseed_funtion value: {self.func(self.x_seed)}\nsolution: {self.x_solu}\nfunction value: {self.f_solu}')
        plt.figure(
figsize=(6, 4))
        x = np.linspace(
self.interval[0], self.interval[1])
        y =
self.func(x)
        plt.plot(x,y,
'g-',label='function')
        plt.plot(
self.x_seed,self.func(self.x_seed),'bo',label='seed')
        plt.plot(
self.x_solu,self.func(self.x_solu),'r*',label='solution')
        plt.title(
f'solution={self.x_solu}')
        plt.xlabel(
'x')
        plt.ylabel(
'y')
        plt.legend()
        plt.show()
        plt.close()


if __name__ == '__main__':
    SA([-
5,5],'max')

输出结果:

seed: 2.2204847770394913

seed_funtion value: 6.025576576848058

solution: -4.50428520583421

function value: 42.43890315917159

参考博客网址:

模拟退火算法的原理+应用-CSDN博客

https://www.cnblogs.com/xxhbdk/p/9192750.html

其他启发式算法学习推荐:

遗传算法(Genetic Algorithms)的全面讲解及python实现

粒子群(PSO)优化算法(Particle Swarm Optimization)的全面讲解及python实现

  • 8
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: 模拟退火算法Simulated AnnealingSA)是一种全局优化算法,常用于解决各种复杂的组合优化问题。下面是一个基本的模拟退火算法Python 实现: ```python import random import math # 目标函数 def objective_function(x): return math.sin(x) # 初始解 def initial_solution(): return random.uniform(-math.pi, math.pi) # 定义温度函数 def temperature(k, T0): alpha = 0.95 return T0 * (alpha ** k) # 定义状态产生函数 def neighbor(x, delta): return x + random.uniform(-delta, delta) # 定义接受准则 def acceptance_criterion(delta, temperature): if delta < 0: return True else: p = math.exp(-delta / temperature) return random.random() < p # 模拟退火算法 def simulated_annealing(kmax, T0, delta): # 初始化当前解和最优解 x_curr = initial_solution() x_best = x_curr # 迭代过程 for k in range(kmax): # 产生新的状态 x_new = neighbor(x_curr, delta) # 计算能量差 delta_E = objective_function(x_new) - objective_function(x_curr) # 如果新状态更优,则接受 if acceptance_criterion(delta_E, temperature(k, T0)): x_curr = x_new # 更新最优解 if objective_function(x_curr) < objective_function(x_best): x_best = x_curr return x_best # 测试 x_best = simulated_annealing(kmax=1000, T0=100, delta=0.5) print("最优解:", x_best) print("最优值:", objective_function(x_best)) ``` 这个实现中,目标函数是 `math.sin(x)`,初始解是在区间 `[-π, π]` 内随机生成的,温度函数为 $T_k = T_0 \times \alpha^k$,其中 $\alpha = 0.95$,状态产生函数是在当前解的基础上,加上一个在 $[-\delta, \delta]$ 内随机产生的扰动,接受准则使用了 Boltzmann 分布的形式,即 $\mathrm{P}(\Delta E) = \exp(-\Delta E/T)$。在每次迭代中,首先产生一个新状态,然后计算能量差 $\Delta E$,如果新状态更优,则接受。最后,输出最优解和最优值。 需要注意的是,模拟退火算法的结果可能受到很多参数的影响,比如初始温度 $T_0$、温度下降速率 $\alpha$、状态产生函数的扰动范围 $\delta$ 等等,需要根据具体问题进行调整。 ### 回答2: 模拟退火算法是一种基于概率的全局优化算法,常用于求解复杂问题。 简单来说,模拟退火算法通过模拟固体退火的过程来逐渐降低系统能量,从而找到最优解。其基本思路是通过在初始解附近进行随机搜索,并接受部分劣解,从而有机会跳出当前局部最优解并找到潜在的全局最优解。 使用Python实现模拟退火算法的基本步骤如下: 1. 初始化:定义问题的初始解、温度和冷却率。 2. 外循环:反复迭代,直到满足终止条件(例如温度降至某个阈值或达到最大迭代次数)。 3. 内循环:在当前温度下,进行随机扰动并得到新的解。 4. 接受准则:根据一定的概率接受新解,一般采用Metropolis准则:若新解优于当前解,则直接接受;否则以一定概率接受差解,概率与温度和差解程度有关。 5. 更新温度:根据设定的冷却率逐渐降低温度。 6. 返回最优解。 以下是一个基本的模拟退火算法Python实现示例: ```python import random import math def simulated_annealing(initial_solution, initial_temperature, cooling_rate): current_solution = initial_solution best_solution = current_solution temperature = initial_temperature while temperature > 1: for i in range(cooling_rate): new_solution = get_neighbor(current_solution) energy_delta = calculate_energy(new_solution) - calculate_energy(current_solution) if energy_delta < 0 or random.random() < math.exp(-energy_delta / temperature): current_solution = new_solution if calculate_energy(current_solution) < calculate_energy(best_solution): best_solution = current_solution temperature *= cooling_rate return best_solution def get_neighbor(solution): # 实现获取相邻解的逻辑 pass def calculate_energy(solution): # 实现计算解的能量的逻辑 pass # 调用示例 initial_solution = ... initial_temperature = ... cooling_rate = ... best_solution = simulated_annealing(initial_solution, initial_temperature, cooling_rate) print(best_solution) ``` 在实际应用中,需要根据具体问题定义相邻解的生成方法和能量计算方法,并根据问题特性调整初始温度和冷却率等参数,以获得更好的求解效果。 ### 回答3: 模拟退火算法Simulated Annealing)是一种启发式优化算法,常用于求解最优化问题。该算法的基本思想源于固体退火原理,通过模拟物质退火过程中的冷却过程,以一定的概率接受劣质解,从而避免陷入局部最优解,寻找全局最优解。 以下是使用Python实现模拟退火算法的步骤: 1. 初始化当前解和初始解温度: - 将当前解设为初始解。 - 设置初始解温度。 2. 迭代更新当前解: - 在当前解的邻域中生成一个新解。 - 计算新解的目标函数值与当前解的目标函数值的差值。 - 如果新解的目标函数值较好,则接受新解作为当前解。 - 如果新解的目标函数值较差,则以一定的概率接受新解作为当前解(概率公式通常为exp(-delta/T),其中delta为目标函数值差值,T为当前解温度)。 - 更新当前解温度。 3. 判断停止条件: - 当达到停止条件(如迭代次数、目标函数值变化很小等)时,停止迭代并输出结果。 - 否则,返回步骤2继续迭代更新当前解。 通过以上步骤,我们可以实现一个基本的模拟退火算法。 代码示例: ```python import math import random def simulated_annealing(): # 初始化当前解和初始解温度 current_solution = initial_solution() current_temp = initial_temperature() while not stop_condition(): # 在当前解的邻域中生成一个新解 new_solution = get_neighbor(current_solution) # 计算新解的目标函数值与当前解的目标函数值的差值 delta = calculate_delta(current_solution, new_solution) # 如果新解的目标函数值较好,则接受新解作为当前解 if delta > 0: current_solution = new_solution else: # 如果新解的目标函数值较差,则以一定的概率接受新解作为当前解 accept_prob = math.exp(delta / current_temp) if random.random() < accept_prob: current_solution = new_solution # 更新当前解温度 current_temp = update_temperature(current_temp) return current_solution # 根据具体问题定义初始化当前解和初始解温度的函数 def initial_solution(): # 初始化当前解 pass def initial_temperature(): # 初始化初始解温度 pass # 根据具体问题定义获取当前解邻域的函数 def get_neighbor(current_solution): # 获取当前解的邻域中的一个新解 pass # 根据具体问题定义计算目标函数值差值的函数 def calculate_delta(current_solution, new_solution): # 计算新解的目标函数值与当前解的目标函数值的差值 pass # 根据具体问题定义停止条件的函数 def stop_condition(): # 判断是否满足停止条件 pass # 根据具体问题定义更新当前解温度的函数 def update_temperature(current_temp): # 更新当前解温度 pass ``` 以上是使用Python实现模拟退火算法的基本步骤,具体在每个函数中需要根据实际问题做进一步的定义和实现

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Trisyp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值