论语 季氏篇(笔记)

孔子曰:“益者三友,损者三友。友直,友谅,友多闻,益矣。友便辟,友善柔,友便佞,损矣。”

  • 明·张居正:“与不正人居,声色狗马之是娱,阿谀逢迎以为悦,亦所谓损友也。养德者可不辨哉?”

孔子曰:“益者三乐,损者三乐。乐节礼乐,乐道人之善,乐多贤友,益矣。乐骄乐,乐佚游,乐晏乐,损矣。”

  • 宋·朱熹:“骄乐,则侈肆而不知节。佚游,则惰慢而恶闻善。宴乐,则淫溺而狎小人。三者损益,亦相反也。”孔子说:“有益的快乐有三种,有害的快乐也有三种。以节制礼乐为快乐,以宣扬别人的优点为快乐,以广交贤良的朋友为快乐,是有益的快乐。以骄恣淫乐为快乐,以放荡无度为快乐,以宴玩荒淫为快乐,是有害的快乐。”现代社会,一些人喜欢流连于灯红酒绿之中,寻求视觉的冲击和感官的刺激,放纵自己以此为乐。这样的快乐是短暂的,也是有百害而无一利的,虽然人们似乎在放纵之后也知道放纵对自己的长远发展是不利的,然而人们似乎更容易被短暂的快乐所支配,故而这种放纵周而复始,故而浑浑噩噩、怨天尤人的混日子。

孔子曰:“侍于君子有三愆:言未及之而言谓之躁,言及之而不言谓之隐,未见颜色而言谓之瞽。”

  • 可与言而不与之言,失人;不可与言而与言,失言。知者不失人,亦不失言。

孔子曰:“君子有三戒:少之时,血气未定,戒之在色;及其壮也,血气方刚,戒之在斗;及其老也,血气既衰,戒之在得。”

  • 宋·朱熹:“血气,形之所待以生者,血阴而气阳也。得,贪得也。随时知戒,以理胜之,则不为血气所使也。”

孔子曰:“君子有三畏:畏天命,畏大人,畏圣人之言。小人不知天命而不畏也,狎大人,侮圣人之言。”

  • 明·张居正:“盖人之所以勉于为善而不敢为恶者,只因有个天理的念头在心,所以凡事点检,不敢妄为,若天理之心不存,则骄淫放逸,将何所不至乎?

孔子曰:“生而知之者,上也;学而知之者,次也;困而学之,又其次也;困而不学,民斯为下矣。”

  • 孔子只说自己是学而知之,谁又敢说自己是生而知之呢

孔子曰:“君子有九思:视思明,听思聪,色思温,貌思恭,言思忠,事思敬,疑思问,忿思难,见得思义。”

  • 孔子说:“君子有九件事要认真考虑:看的时候要考虑是否明白,听的时候要考虑是否清楚,脸色要考虑是否温和,容止要考虑是否谦恭,语言要考虑是否忠诚,做事要考虑是否谨慎,有疑问要考虑如何向人请教,心里不平时要考虑会有什么后患,得到利益时要考虑是否符合道义。”
资源下载链接为: https://pan.quark.cn/s/ddc62c5d4a5d Windows Mobile 是微软在 0200 年代至 2010 年代初推出的移动操作系统,曾广泛应用于智能手机和平板电脑。开发者可以借助各种库和框架为其开发功能丰富的应用,其中 “32feet.NET” 是一个开源的 .NET 库,专为 .NET Framework 和 .NET Compact Framework 提供蓝牙开发支持。它包含多个命名空间,例如 InTheHand.Devices.Bluetooth、InTheHand.Net.Personal 和 InTheHand.Phone.Bluetooth,用于实现蓝牙设备交互功能。 InTheHand.Devices.Bluetooth 命名空间用于执行基础蓝牙操作,比如扫描附近设备、建立连接以及发现蓝牙服务等。InTheHand.Net.Personal 提供了更高级的功能,例如创建个人区域网络(PAN)、文件传输和串行端口模拟,便于开发者开发跨设备的数据共享应用。而 InTheHand.Phone.Bluetooth 主要针对 Windows Phone 平台,支持蓝牙配对、消息收发和蓝牙耳机控制等功能,不过由于 Windows Mobile 已停止更新,该命名空间更多适用于旧设备或项目。 压缩包中的文件列表看似是维基页面的渲染文件,可能是关于 32feet.NET 的使用教程、API 参考或示例代码。文件名如 13632.html、563803.html 等可能是页面 ID,涵盖蓝牙设备搜索、连接和数据传输等不同主题。 使用 32feet.NET 进行蓝牙开发时,开发者需要注意以下几点:首先,确保开发环境已安装 .NET Framework 或 .NET Compact Framework,以及 32feet.NET
资源下载链接为: https://pan.quark.cn/s/d8a2bf0af1ac Mask R-CNN 是一种在实例分割任务中表现优异的深度学习模型,它融合了 Faster R-CNN 的目标检测功能和 CNN 的像素级分类能力,能够实现图像中每个目标的定位、识别与分割。本指南将指导你如何使用 Mask R-CNN 训练自定义数据集。 你需要准备包含图像(JPEG 或 PNG 格式)和标注文件(XML 或 JSON 格式)的数据集,标注文件需包含物体类别、坐标和掩模信息。数据集应按照 COCO 标准组织,分为训练集、验证集和可选的测试集。可以使用工具如 COCO API 或 labelme 将原始数据转换为 COCO 格式,并确保图像文件名与标注文件名一致且在同一目录下。通常按 8:2 或 9:1 的比例划分训练集和验证集。 从提供的压缩包中安装所需库。运行 pip install -r requirements.txt 安装依赖,包括 TensorFlow、Keras、Cython、COCO API 等。 修改 train_test.py 和 test_model.py 中的路径,使其指向你的数据集目录,确保 ROOT_DIR 指向数据集根目录,ANNOTATION_DIR 指向标注文件所在目录。在 config.py 中根据硬件资源和训练目标调整学习率、批大小、迭代次数等参数。 运行 train_test.py 开始训练。训练时会加载预训练权重并进行微调,期间会定期保存模型,便于评估和恢复。 使用 test_model.py 或 test.py 对模型进行验证和测试。这些脚本会加载保存的模型权重,将其应用于新图像并生成预测结果。 预测结果为二进制掩模,需进一步处理为可读图像。可借助 COCO API 或自定义脚本将掩模合并到原始图像上,生成可视化结果。 若模型性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值