CCPC 2016安徽大学站 I 朋友 hdu 5969

1 篇文章 0 订阅
1 篇文章 0 订阅
B君和G君聊天的时候想到了如下的问题。 
给定自然数l和r ,选取2个整数x,y满足l <= x <= y <= r ,使得x|y最大。 
其中|表示按位或,即C、 C++、 Java中的|运算。
Input
包含至多10001组测试数据。 
第一行有一个正整数,表示数据的组数。 
接下来每一行表示一组数据,包含两个整数l,r。 
保证 0 <= l <= r <=  1018 1018
Output
对于每组数据输出一行,表示最大的位或。
Sample Input
5
1 10
0 1
1023 1024
233 322
1000000000000000000 1000000000000000000
Sample Output
15
1
2047
511

1000000000000000000

中文题目,很简单的题意。

题目分析:因为数据偏大,很显然用暴力会超时,果不其然我超时了一发,以为这是比赛场上的签到题可以无

做,没想到还是太年轻。然后来分析,因为给你l和r,所以位或的值肯定是可以用r和l到r的一个数表示的,那

现在我们考虑,先把l和r都换成二进制,然后从高位向低位遍历,并且l和r的位数要一致,不一致要用0补齐,

一旦有他们在同一位时l为0,r为1,立马停止,将此位后面的r全部补为1,所得到的值就是答案。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
long long pow(long long a,long long b){
	for(int i=2;i<=b;i++){
		a=a*2;
	}
	if(b == 0)
	 return 1;
	return a;
}
int main(){
	long long l,r;
	int n;
	long long ans=0;
	scanf("%d",&n);
    int a[1100],b[1100],c[1100];
    while(n--){
    	scanf("%lld%lld",&l,&r);
    	int i=1,j=0;
    	ans=0;
    	long long ac=l,bc=r;
    	memset(a,0,sizeof(a));
    	memset(b,0,sizeof(b));
    	memset(c,0,sizeof(c));
    	while(l){
    		a[i++]=l%2;
    		l=l/2;
		}
    	for(j=1;j<i;j++)
    	   swap(a[i-j],b[j]);//对l十进制变为二进制,用b存储 
		 long long zz,z=i;
		 zz=z;
    	 long long p;
    	i=1;j=1;
    	memset(a,0,sizeof(a));
	    while(r){
		     c[i++]=r%2;
			 r=r/2;	
	    }
	    for(j=1;j<i;j++)
		   swap(c[i-j],a[j]);
		   p=i;
	//对r十进制变为二进制,用a存储 
	    memset(c,0,sizeof(c));
	    if(p>=zz){
	    	for(int m=1;m<zz;m++,z--)
	    	  c[p-z+1]=b[m];
		}//保证c数组和b数组的位数相同
		if(ac == bc )
		 printf("%lld\n",(ac|bc));//如果两数相等,则直接输出 
		else{
		        for(int k=1;k<p;k++){
		  	       if(a[k]==1 && c[k]==0){
		  		      for(int q=k;q<p;q++)
		  		         a[q]=1;
		  		     break;
			       }
	            }
		        for(int i=1;i<p;i++)
		            ans+=a[i]*pow(2,p-i-1);//二进制变十进制 
     	        printf("%lld\n",ans);
		   }
		}
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值