问题描述
n 个小朋友站成一排。现在要把他们按身高从低到高的顺序排列,但是每次只能交换位置相邻的两个小朋友。
每个小朋友都有一个不高兴的程度。开始的时候,所有小朋友的不高兴程度都是0。
如果某个小朋友第一次被要求交换,则他的不高兴程度增加1,如果第二次要求他交换,则他的不高兴程度增加2(即不高兴程度为3),依次类推。当要求某个小朋友第k次交换时,他的不高兴程度增加k。
请问,要让所有小朋友按从低到高排队,他们的不高兴程度之和最小是多少。
如果有两个小朋友身高一样,则他们谁站在谁前面是没有关系的。
每个小朋友都有一个不高兴的程度。开始的时候,所有小朋友的不高兴程度都是0。
如果某个小朋友第一次被要求交换,则他的不高兴程度增加1,如果第二次要求他交换,则他的不高兴程度增加2(即不高兴程度为3),依次类推。当要求某个小朋友第k次交换时,他的不高兴程度增加k。
请问,要让所有小朋友按从低到高排队,他们的不高兴程度之和最小是多少。
如果有两个小朋友身高一样,则他们谁站在谁前面是没有关系的。
输入格式
输入的第一行包含一个整数n,表示小朋友的个数。
第二行包含 n 个整数 H1 H2 … Hn,分别表示每个小朋友的身高。
第二行包含 n 个整数 H1 H2 … Hn,分别表示每个小朋友的身高。
输出格式
输出一行,包含一个整数,表示小朋友的不高兴程度和的最小值。
样例输入
3
3 2 1
3 2 1
样例输出
9
样例说明
首先交换身高为3和2的小朋友,再交换身高为3和1的小朋友,再交换身高为2和1的小朋友,每个小朋友的不高兴程度都是3,总和为9。
数据规模和约定
对于10%的数据, 1<=n<=10;
对于30%的数据, 1<=n<=1000;
对于50%的数据, 1<=n<=10000;
对于100%的数据,1<=n<=100000,0<=Hi<=1000000。
对于30%的数据, 1<=n<=1000;
对于50%的数据, 1<=n<=10000;
对于100%的数据,1<=n<=100000,0<=Hi<=1000000。
解析:一道用树状数组求逆序对的题目,复习了之前学习的树状数组。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define maxn 1000005
#define N 100050
using namespace std;
long long a[N],b[maxn];
long long c[maxn];
int lowbit(int x)
{
return x&(-x);
}
int getsum(int x)
{
int ans=0;
for(int i=x;i>=1;i-=lowbit(i))
ans += c[i];
return ans;
}
void add(int x,int y)
{
for(int i=x;i<=maxn;i+=lowbit(i))
{
c[i] += y;
}
}
int main()
{
int n;
cin>>n;
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(c,0,sizeof(c));
for(int i=1;i<=n;i++)
{
cin>>a[i];
add(a[i]+1,1);
b[i] = i - getsum(a[i]+1);
}
memset(c,0,sizeof(c));
for(int i=n;i>=1;i--)
{
add(a[i]+1,1);
b[i] += getsum(a[i]);
}
long long ant=0;
for(int i=1;i<=n;i++)
{
ant += ((1+b[i])*b[i]/2);
}
cout<<ant<<endl;
return 0;
}