小朋友排队 蓝桥杯

树状数组的学习地址:http://blog.csdn.net/clx55555/article/details/52261538


由于树状数组是从1开始的,而题目中小盆友的身高可以为0(真是长见识了),所以我们将每个小盆友的身高加1然后作为树状数组的下标,将数值1存到相应的位置.

第一次读入3,此时读入的数据量为1个,变成这样

C[1]        C[2]        C[3]        C[4]       C[5]        C[6]         C[7]         C[8]
  0             0            0            1            0             0             0              0
可以看到sum(C[1],C[4])=1(可以由树状数组的统计数组得到),这个是小于等于3的数字的个数,也就是说当输入第一个数字3的时候没有比它小的数字存在,这时我们用 输入数字总数-sum(C[1],C[4])=0,也就是说大于3的数字的个数为0,我们令b[0]=0.

第二次读入2,此时读入的数据量为2个,变成这样

C[1]        C[2]        C[3]        C[4]       C[5]        C[6]         C[7]         C[8]
  0             0            1            1            0             0             0              0

可以看到sum(C[1],C[3])=1,任然不存在比它小的数,但此时输入的数据总量为2,而2-1=1,就是说,存在一个数在2之前并且大于2,这个数当然就是3,我们另b[1]=1.

第三次读入1,此时读入的数据量为3,变成这样

C[1]        C[2]        C[3]        C[4]       C[5]        C[6]         C[7]         C[8]
  0             1            1            1            0             0             0              0
可以看到sum(C[1],C[2])=1,任然不存在比它小的数,但此时输入的数据总量为3,而3-1=2,就是说,存在两个数在1之前并且大于1,这个数当然就是2,3,我们另b[2]=2. 

到此,我们已经算出了每个数前面的较大的数的个数了,数据存在num[]中,现在我们再反过来,先插入1,再插入2,再插入3,但这次我们不再用总数减去sum了,而直接求sum,求出来的自然就是,每个数后面的较小的数的个数,然后将得到的数值累加到相应的b[i]中,最终我们会得到b[0]=2,b[1]=2,b[2]=2,分别对应num[0]=3,num[1]=2,num[2]=1。

求得了每个小盆友被移动的次数,我们需要计算其不高兴程度,这里实际上可以事先打个表,就是将被移动n次后的不高兴值全算出来,然后直接用就可以了,这里,我们将其存到total[]数组中,而且total[2]=3,所以总不高兴值就是9.


需要注意的是如果重复的数字出现怎么办,如果出现,实际上出问题的会是求每个数之前较大数的那部分,因为用到了数的总个数,如果出现一样的数,就会导致相减后的结果偏大,而且正好是大了 重复量-1 ,那么我们就可以算出重复量,然后将这一部分减去就行,关键是怎么算重复量,实际也很简单,通过树状数组,我们可以求得sum(1,a)和sum(1,a+1),其中输入的数字为a,前者算出的小于a的数的个数,后者算出的是小于等于a的数的个数,两个一减就是等于a的个数。

#include<iostream>
#include<memory.h>
#define MAX 1000010
#define N 100010
using namespace std;
int C1[MAX],C2[MAX],b[MAX];
int num[N];
long long total[N],ans;
int lowbit(int x)
{
	return x&(-x);
}

void add(int pos,int num,int *C)
{
	while(pos<MAX)
    {
        C[pos]+=num;
        pos+=lowbit(pos);
    }
}

int Sum(int pos,int *C)
{
	int sum=0;
	while(pos>0)
	{
		sum+=C[pos];
		pos-=lowbit(pos);
	}
	return sum;
}


void init()
{
	total[0]=0;
	for(int i=1;i<=N;i++)
	{
		total[i]=total[i-1]+i;
	}
}

int main()
{
	int i;
	init();
	memset(C1,0,sizeof(C1));
	memset(C2,0,sizeof(C2));
	int n;
	cin>>n;
	for(i=0;i<n;i++)
	{
		cin>>num[i];
		add(num[i]+1,1,C1);
 b[i]=i-Sum(num[i],C1);
        b[i]=b[i]-(Sum(num[i]+1,C1)-Sum(num[i],C1)-1);
	}

	for(i=n-1;i>=0;i--)
	{
		add(num[i]+1,1,C2);
		b[i]+=Sum(num[i],C2);
	}


	ans=0;
	for(i=0;i<n;i++)
	{
		ans+=total[b[i]];
	}
	cout<<ans<<endl;
	return 0;
 }





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值