树状数组的学习地址:http://blog.csdn.net/clx55555/article/details/52261538
由于树状数组是从1开始的,而题目中小盆友的身高可以为0(真是长见识了),所以我们将每个小盆友的身高加1然后作为树状数组的下标,将数值1存到相应的位置.
第一次读入3,此时读入的数据量为1个,变成这样
C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8]
0 0 0 1 0 0 0 0
可以看到sum(C[1],C[4])=1(可以由树状数组的统计数组得到),这个是小于等于3的数字的个数,也就是说当输入第一个数字3的时候没有比它小的数字存在,这时我们用 输入数字总数-sum(C[1],C[4])=0,也就是说大于3的数字的个数为0,我们令b[0]=0.
第二次读入2,此时读入的数据量为2个,变成这样
C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8]
0 0 1 1 0 0 0 0
可以看到sum(C[1],C[3])=1,任然不存在比它小的数,但此时输入的数据总量为2,而2-1=1,就是说,存在一个数在2之前并且大于2,这个数当然就是3,我们另b[1]=1.
第三次读入1,此时读入的数据量为3,变成这样
C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8]
0 1 1 1 0 0 0 0
可以看到sum(C[1],C[2])=1,任然不存在比它小的数,但此时输入的数据总量为3,而3-1=2,就是说,存在两个数在1之前并且大于1,这个数当然就是2,3,我们另b[2]=2.
到此,我们已经算出了每个数前面的较大的数的个数了,数据存在num[]中,现在我们再反过来,先插入1,再插入2,再插入3,但这次我们不再用总数减去sum了,而直接求sum,求出来的自然就是,每个数后面的较小的数的个数,然后将得到的数值累加到相应的b[i]中,最终我们会得到b[0]=2,b[1]=2,b[2]=2,分别对应num[0]=3,num[1]=2,num[2]=1。
求得了每个小盆友被移动的次数,我们需要计算其不高兴程度,这里实际上可以事先打个表,就是将被移动n次后的不高兴值全算出来,然后直接用就可以了,这里,我们将其存到total[]数组中,而且total[2]=3,所以总不高兴值就是9.
需要注意的是如果重复的数字出现怎么办,如果出现,实际上出问题的会是求每个数之前较大数的那部分,因为用到了数的总个数,如果出现一样的数,就会导致相减后的结果偏大,而且正好是大了 重复量-1 ,那么我们就可以算出重复量,然后将这一部分减去就行,关键是怎么算重复量,实际也很简单,通过树状数组,我们可以求得sum(1,a)和sum(1,a+1),其中输入的数字为a,前者算出的小于a的数的个数,后者算出的是小于等于a的数的个数,两个一减就是等于a的个数。
#include<iostream>
#include<memory.h>
#define MAX 1000010
#define N 100010
using namespace std;
int C1[MAX],C2[MAX],b[MAX];
int num[N];
long long total[N],ans;
int lowbit(int x)
{
return x&(-x);
}
void add(int pos,int num,int *C)
{
while(pos<MAX)
{
C[pos]+=num;
pos+=lowbit(pos);
}
}
int Sum(int pos,int *C)
{
int sum=0;
while(pos>0)
{
sum+=C[pos];
pos-=lowbit(pos);
}
return sum;
}
void init()
{
total[0]=0;
for(int i=1;i<=N;i++)
{
total[i]=total[i-1]+i;
}
}
int main()
{
int i;
init();
memset(C1,0,sizeof(C1));
memset(C2,0,sizeof(C2));
int n;
cin>>n;
for(i=0;i<n;i++)
{
cin>>num[i];
add(num[i]+1,1,C1);
b[i]=i-Sum(num[i],C1);
b[i]=b[i]-(Sum(num[i]+1,C1)-Sum(num[i],C1)-1);
}
for(i=n-1;i>=0;i--)
{
add(num[i]+1,1,C2);
b[i]+=Sum(num[i],C2);
}
ans=0;
for(i=0;i<n;i++)
{
ans+=total[b[i]];
}
cout<<ans<<endl;
return 0;
}