小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1<= Ai <= 100)
输出
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
例如,
输入:
2
4
5
程序应该输出:6
再例如,
输入:
2
4
6
程序应该输出:
INF
样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
ps:完全背包,,,,没看出来,看来要重新刷一遍DP46了,加油。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
int gcd(int x,int y)
{
if(x%y == 0) return y;
else gcd(y,x%y);
}
int a[101];
int dp[10000];
int main()
{
int n;
int gc;
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i];
gc=gcd(a[1],a[2]);
for(int i=3;i<=n;i++)
gc = gcd(gc,a[i]);
if(gc != 1)
cout<<"INF"<<endl;
else
{
memset(dp,0,sizeof(dp));
dp[0] = 1;
for(int i=1;i<=n;i++)
for(int j=0;j<=10000;j++)
{
if(dp[j])
dp[j+a[i]]=1;
}
int counts=0;
for(int i=0;i<=10000;i++)
if(dp[i]==0)
counts++;
cout<<counts<<endl;
}
return 0;
}