Keras-Yolov3环境搭建与测试实践(训练自建数据集)
**作者:
XiaoPaun chungkou20@126.com
前言
1.本文使用的源代码可从以下地址下载click here
2.源代码编译环境:
python 3.5.2/keras 2.1.5/tensorflow 1.6.0
3.本文使用的编译环境:(注:高版本可能会出现不能很好向下兼容情况)
Windows 10/Anaconda3 5.2.0/python 3.5.6/keras 2.2.0/tensorflow 1.10.0
环境搭建
1.Anaconda3 安装
Anaconda3可从清华镜像源下载对应版本,强烈推荐使用anaconda3搭建编译环境
2.安装TF、Keras等
2.1 打开anaconda,选中左侧‘environment’,‘creat’,新建一个python版本3.5的虚拟环境(例:ttff),或者使用CMD
2.2 虚拟环境搭建完成之后,打开命令行
2.3 添加清华镜像源,解决下载时间过长或失败的问题
#添加源
Conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
#确认添加
conda config --set show_channel_urls yes
#查看是否添加成功
conda info
#恢复默认源
conda config --remove-key channels
2.4 安装tensorflow-gpu,也可安装cpu版本
conda install tensorflow-gpu==1.10.0
#检查是否按照成功
python
import tensorflow as tf #若无报错则成功
2.5 安装Keras
#查看当前安装的库
conda list #查看当前的tensorflow版本
参考文章CSDN博客查看当前tensorflow版本适配的Keras版本
#安装keras
pip install keras==2.2.0
#检查是否安装成功
import keras as k
2.6 使用清华镜像源安装其他关联的库,例openCV
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python
测试实践
3 基本代码测试
3.1 下载 yolov3.cfg 预训练权重click here
3.2 转换为 .weight 和 .h5 文件(注:.cfg为configure文件,储存各layer参数,.weights为权重文件,.h5为keras专用配置文件)
#转至根目录下
cd your-own-path #代码存放路径
cd keras-yolo3-master
python convert.py yolov3.cfg yolo3.weights model data/yolo.h5
转换成功后文件里应会出现 yolo3.weights 和 yolo.h5 文件
3.3 运行脚本,测试(具体脚本可查看Readme.md)
#测试视频
python yolo_video.py --input= your own video path
#图片同理
python yolo_video.py --image=your owm image path
#调用默认设备摄像头
python yolo_video.py
若调用默认摄像头报错,可修改源代码yolo_video.py中vid值
4 训练自建数据集
该部分内容可参考作者的另一篇博客 click here