Keras-Yolov3环境搭建与测试实践(训练自建数据集)

**作者:
XiaoPaun chungkou20@126.com

前言

1.本文使用的源代码可从以下地址下载click here
2.源代码编译环境:
python 3.5.2/keras 2.1.5/tensorflow 1.6.0
3.本文使用的编译环境:(注:高版本可能会出现不能很好向下兼容情况)
Windows 10/Anaconda3 5.2.0/python 3.5.6/keras 2.2.0/tensorflow 1.10.0

环境搭建

1.Anaconda3 安装

Anaconda3可从清华镜像源下载对应版本,强烈推荐使用anaconda3搭建编译环境

2.安装TF、Keras等

2.1 打开anaconda,选中左侧‘environment’,‘creat’,新建一个python版本3.5的虚拟环境(例:ttff),或者使用CMD

截图1
2.2 虚拟环境搭建完成之后,打开命令行
截图2
2.3 添加清华镜像源,解决下载时间过长或失败的问题

#添加源
Conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
#确认添加
conda config --set show_channel_urls yes
#查看是否添加成功
conda info
#恢复默认源
conda config --remove-key channels

2.4 安装tensorflow-gpu,也可安装cpu版本

conda install tensorflow-gpu==1.10.0
#检查是否按照成功
python
import tensorflow as tf #若无报错则成功

2.5 安装Keras

#查看当前安装的库
conda list #查看当前的tensorflow版本

参考文章CSDN博客查看当前tensorflow版本适配的Keras版本

#安装keras
pip install keras==2.2.0
#检查是否安装成功
import keras as k

2.6 使用清华镜像源安装其他关联的库,例openCV

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python

测试实践

3 基本代码测试

3.1 下载 yolov3.cfg 预训练权重click here
3.2 转换为 .weight 和 .h5 文件(注:.cfg为configure文件,储存各layer参数,.weights为权重文件,.h5为keras专用配置文件)

#转至根目录下
cd your-own-path #代码存放路径
cd keras-yolo3-master
python convert.py yolov3.cfg yolo3.weights model data/yolo.h5
转换成功后文件里应会出现 yolo3.weights 和 yolo.h5 文件

3.3 运行脚本,测试(具体脚本可查看Readme.md)

#测试视频
python yolo_video.py --input= your own video path
#图片同理
python yolo_video.py --image=your owm image path
#调用默认设备摄像头
python yolo_video.py

若调用默认摄像头报错,可修改源代码yolo_video.py中vid值

4 训练自建数据集

该部分内容可参考作者的另一篇博客 click here

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值