MATLAB图像去雾自适应增强

本文提出一种MATLAB实现的图像去雾算法,通过自适应恢复大气光强度来解决传统方法中图像亮度偏暗和色彩失真的问题。采用分块处理和局部区域分析确定大气光方向,并引入惩罚因子优化图像去雾,通过LBFGS优化获得准确的大气光强度,提高图像的色彩还原度和清晰度,适用于计算机视觉和图像处理领域。
摘要由CSDN通过智能技术生成

MATLAB图像去雾自适应增强

摘要:传统的单幅图像去雾方法中大气光强度仅设定为与图像最亮象素有关的经验值,容易造成去雾后的图像亮度偏暗,且某些区域色彩还原失真等问题。本文提出一种大气光强度自适应恢复算法。首先对图进行分块,根据每个图块的像素在RGB颜色空间分布在同一条线上,可求得大气光强度的方向,然后对大气光强度模值引入一个惩罚因子实现图像去雾,对去雾后图像提出大气光强度模值估计的目标函数,根据图像明暗系数的最大值与透射率的等级无关的约束条件,利用LBFGS优化从而得到正确的大气光强度模值。实验结果证明该方法可以有效避免大气光强度估值偏差而引起的图像色彩失真,鲁棒性强,去雾后的图像具有更好的色彩还原度和清晰度,更能符合人眼视觉效果。

1引言

近年来,环境问题日益严峻,雾霾天气的出现直接影响了室外视觉监视、目标识别与跟踪等系统效用的发挥,给人们的日常生活带来了极大的不便。因此,对单幅图像如何进行有效去雾具有重要的研究意义。目前,通用的图像去雾算法都是基于以下物理模型[1,2];

I(x)=J(x)t(x)+(1-t(x))A (1)

其中,I(x)表示雾图,J(x)表示无雾图像,x是图像像素的坐标,t(x)为大气透射率,A为大气光强度,为全局矢量。图像去雾的本质是要实现A与t(x)的估算。现有的单幅图像去雾算法主要围绕透射率t(x)的求解,也取得了很多有效的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值