题目描述
作为一个生活散漫的人,小 Z 每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小 Z 再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小 Z 把这 N N N 只袜子从 1 1 1 到 N N N 编号,然后从编号 L L L 到 R ( L < R ) R(L\lt R) R(L<R) 的这 R − L + 1 R-L+1 R−L+1 只袜子中随机抽出两只穿上。
尽管小 Z 并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小 Z,他有多大的概率抽到两只颜色相同的袜子。当然,小 Z 希望这个概率尽量高,所以他可能会询问多个 ( L , R ) (L,R) (L,R) 以方便自己选择。
N , M ≤ 50000 N,M\le 50000 N,M≤50000, 1 ≤ L < R ≤ N 1\le L\lt R\le N 1≤L<R≤N, C i ≤ N C_i\le N Ci≤N。
算法分析
莫队算法入门第一题,记查询区间每种袜子个数为 t i t_i ti,则答案为 ∑ t i × ( t i − 1 ) ( r − l + 1 ) × ( r − l ) \frac{\sum t_i\times(t_i-1)}{(r-l+1)\times(r-l)} (r−l+1)×(r−l)∑ti×(ti−1),使用莫队算法求解即可,注意细节。
注:LG 上好像要判一些情况……
代码实现
#include <cstdio>
#include <cmath>
#include <algorithm>
typedef long long int ll;
const int maxn=50005;
struct ask {int l,r,id;} asks[maxn];int sz,bl[maxn];
inline bool cmp(const ask &x,const ask &y) {return bl[x.l]^bl[y.l]?bl[x.l]<bl[y.l]:bl[x.l]&1?x.r<y.r:x.r>y.r;}
int c[maxn],t[maxn];ll sum=0;
inline void upd(int x,int d) {sum-=t[x]*(t[x]-1LL);t[x]+=d;sum+=t[x]*(t[x]-1LL);}
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll ansx[maxn],ansy[maxn];
int main() {
int n,m;scanf("%d%d",&n,&m);
for(register int i=1;i<=n;++i) scanf("%d",&c[i]);
for(register int i=0;i<m;++i) {scanf("%d%d",&asks[i].l,&asks[i].r);asks[i].id=i;}
int sz=n/sqrt(m*2/3);for(register int i=1;i<=m;++i) bl[i]=(i-1)/sz;
std::sort(asks,asks+m,cmp);
for(register int i=0,l=1,r=0;i<m;++i) {
if(asks[i].l==asks[i].r) {ansx[asks[i].id]=0;ansy[asks[i].id]=1;}
while(l<asks[i].l) upd(c[l++],-1);
while(l>asks[i].l) upd(c[--l],1);
while(r<asks[i].r) upd(c[++r],1);
while(r>asks[i].r) upd(c[r--],-1);
ll x=sum,y=(asks[i].r-asks[i].l+1LL)*(asks[i].r-asks[i].l),g=gcd(x,y);
ansx[asks[i].id]=g?x/g:0;ansy[asks[i].id]=g?y/g:1;
}
for(register int i=0;i<m;++i) printf("%lld/%lld\n",ansx[i],ansy[i]);
return 0;
}