回文串划分(动态规划)

题目描述

给出一个字符串 s,对这个字符串进行切分,每个子串都必须是一个回文字符串,问最少要切多少次。

Example:

给出 s = “aab”,返回最少切分次数 1。因为只需要一次切分就能把 s 切分成符合要求的两个子串[“aa”, “b”] 。


暴力法:

枚举起点和终点去求该区间字符串的最长回文字串(时间复杂度O(n^2)),找到后就去递归剩下的字串(时间复杂度O(n)),所以总的时间复杂度为O(n^3);

动态规划法

定义dp[i]为前i个字符划分成回文串的最小划分次数,然后就会有dp[i] = min(dp[i], dp[j - 1] + 1)(j的取值:1~i)

代码如下:

#include <iostream>
#include <string>
#include <algorithm>
#include <cstdio>
using namespace std;
#define maxn 256
bool isPalindrome[maxn][maxn];
int dp[maxn];//dp[i]代表前i个字符划分成回文串的最小划分次数
void InitPalindromeArray(string str)//把str中的回文串都标记起来;isPalindrome[i][j]代表字符串的第i~j的字符串是回文串
{
	str = "#" + str;//使字符串的下标从1开始
	int len = str.length();
	for (int i = 0; i < len; i++)
	{
		isPalindrome[i][i] = true;
	}
	for (int i = 1; i < len; i++)
	{
		for (int j = 1; j <= i; j++)
		{
			if (str.c_str()[i] == str.c_str()[j] && (i <= j + 1 || isPalindrome[j + 1][i - 1]))
			{
				isPalindrome[j][i] = true;
			}
		}
	}
}
int main()
{
	string str = "acbcabccaa";
	InitPalindromeArray(str);
	int len = str.length();
	for (int i = 1; i <= len; i++)
	{
		dp[i] = i - 1;
	}
	for (int i = 1; i <= len; i++)
	{
		for (int j = 1; j <= i; j++)
		{
			if (isPalindrome[j][i]){
				if (j == 1){//j == 1意味着整个串都是前i个字符是回文串
					dp[i] = 0;
				}
				else{
					dp[i] = min(dp[i], dp[j - 1] + 1);
				}
			}
		}
	}
	printf("%d\n", dp[len]);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值