【数据质量】一种合理的指标命名方式

转载 2018年04月17日 00:00:00

解决口径对不齐问题的关键点之一,便是:指标命名。

在简单的业务场景中,抓住以下几点,指标的命名一般不成问题:

  • 指标名称“名副其实”和“简洁易懂”

  • 遵照一定的行业惯例或者规范(如财务指标、电商经营指标)

当业务规模大,相似的职能线多,相似的部门多了后,数据对齐的难度陡增(这一定程度上是组织架构的不合理的体现,但本文不对此展开讨论,毕竟架构都是各有利弊)。如何让指标命名规范,变成为了一个大问题。我们分两步来解决这个问题。

  • 一、解析一个指标的天然构造

640?wx_fmt=png&wxfrom=5&wx_lazy=1

如上图,每个数据指标,其实都可以分解为“业务主题+限制条件+计算维度+指标名称”的结构。

业务主题,可理解为指标应用的业务范围。这里可以是具体某个业务部门,比如市场部;某个项目,比如客户留存提升;某种职能,比如质控、KPI、数据研发等;甚至是某个分析师名字,比如404。业务主题,理应能帮助指标阅读者迅速理解这个指标的来源。

限制条件,即是指标计算时需要处理的某些必要条件(不做处理指标会脱离业务意义)。对于分析师来说,更直观的理解是SQL里面的WHERE条件。比如,app活跃用户计算时只计算登陆时间在1分钟以上的用户数;网站注册转化率计算时剔除爬虫访问;电商客单价计算时剔除大促订单;外卖单量计算时限制即时单等。

计算维度,即指标做某种维度切分后进行的汇总。比如城市、时段、区域等。这点是可选项。限制条件实质上也是某种维度,但我建议分开理解。限制条件是每个指标计算时必须要考虑的,而维度并不是。

最后是指标名称,要求名副其实且简洁易懂。


  • 二、由构造形成命名

认识到指标名称的构造,命名也就不难了。将各个结构进行罗列并用某种字符连接后,就是一个清晰的指标名称。我个人就比较习惯用“-”,如“数据研发-去爬虫-上海-独立访客数”。

另外,每部分结构中,有时会同时出现多个条件,若是交集,建议用“-”符号连接,若是并集,用“&”符号连接。

但是问题来了,每个指标名称,都要覆盖4个结构,名称就会很长,应用起来不方便。所以,我的建议是,除了业务主题外,其他结构都是可以设置默认值,进而在名称中隐去,使得指标名称形成“主题-名称”的简写形式。当然,默认值的说明一定要清晰。

当某些场景下(数据产品开发、可视化呈现等),业务主题加名称的形式已然过长,可只保留名称,而将业务主题变成注释形式另外展示。

总结一下,指标名称,本质上有全称和简称两种形式,普遍应用简称,而使用者心里需明白全称。

补充一点:“限制条件”、“计算维度”的默认值,应当取最普遍的情况,让数据使用者的理解成本降到最低。比如,活跃访客数的计算,大家普遍认知是剔除了爬虫访问,那么限制条件隐去的默认值便设置为此。当然,一定的宣导不能忽略。


给一个我们现实业务的样例:

全称,质控-全国-直营-平台单-即时单&预订单-组织运力&众包运力-全标品-全维度-有效完成率;

简称,质控-有效完成率。


本文所提出的命名方式,正在试验阶段,大规模应用能否实现,还需要验证。希望这样的思路能给你带来一些启发,也许就能设计出一套更合理的方案。

END

版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。


关联阅读:

原创系列文章:

1:从0开始搭建自己的数据运营指标体系(概括篇)

2 :从0开始搭建自己的数据运营指标体系(定位篇)

3 :从0开始搭建自己的数据运营体系(业务理解篇)

4 :数据指标的构建流程与逻辑

5 :系列 :从数据指标到数据运营指标体系

6:   实战 :为自己的公号搭建一个数据运营指标体系

7:  从0开始搭建自己的数据运营指标体系(运营活动分析)

数据运营 关联文章阅读:  

运营入门,从0到1搭建数据分析知识体系    

推荐 :数据分析师与运营协作的9个好习惯

干货 :手把手教你搭建数据化用户运营体系

推荐 :最用心的运营数据指标解读

干货 : 如何构建数据运营指标体系

从零开始,构建数据化运营体系

干货 :解读产品、运营和数据三个基友关系

干货 :从0到1搭建数据运营体系

数据分析、数据产品 关联文章阅读:

干货 :数据分析团队的搭建和思考

关于用户画像那些事,看这一文章就够了

数据分析师必需具备的10种分析思维。

如何构建大数据层级体系,看这一文章就够了

干货 : 聚焦于用户行为分析的数据产品

如何构建大数据层级体系,看这一文章就够了

80%的运营注定了打杂?因为你没有搭建出一套有效的用户运营体系

从底层到应用,那些数据人的必备技能

读懂用户运营体系:用户分层和分群

做运营必须掌握的数据分析思维,你还敢说不会做数据分析

数据质量的六大评估标准(书摘备查)

准确性:哪些数据不能正确的描述对象的属性或已经过期? 合规性:哪些数据是以非标准格式存储的? 一致性:哪些数据值提供了冲突信息? 重复性:哪些数据记录是重复的记录? 及时性:关键数据是否及时传送到目标...
  • wzy0623
  • wzy0623
  • 2016-12-29 10:54:54
  • 784

久其BI数据质量管控解决方案

1 概述 1.1 方案背景 随着企业信息化建设的全面展开,各种业务系统在企业的运营和管理等方面扮演着越来越重要的角色。系统中存储的大量数据已经成为企业继“人、财、物”后最具价值的企业资源。企业对数...
  • wer0735
  • wer0735
  • 2016-08-25 00:21:29
  • 1353

数据质量评估标准

数据质量评估标准   差 中 好 数据是否足够丰富 购买获得固定的列表 能够从中获得1-4点基本的线索需求 我们能够从数据中获得各种信息 使用数据的技术是否容易 技术比...
  • u013688310
  • u013688310
  • 2014-02-17 23:55:03
  • 1099

数据质量稽核工具-datacheck

一个简单的数据质量稽核自动化工具,通过配置稽核sql,自动化发送报警。 实现常见的稽核规则的检查,例:数据的一致性、完整性、及时性检查,指标的历史波动检查、关联检查、指标平衡检查、其他根据实际业务制定...
  • u011750989
  • u011750989
  • 2017-07-19 17:38:12
  • 978

观测指标标识符逻辑命名与编码系统(LOINC®),含记录的中文翻译

  • 2009年03月13日 08:50
  • 6.96MB
  • 下载

观测指标标识符逻辑命名与编码系统(loinc)

  • 2008年11月04日 16:03
  • 2.4MB
  • 下载

前端开发常用命名规范

前端开发常用命名规范:项目命名全部采用小写方式, 以下划线分隔。例:my_project_name目录命名参照项目命名规则;有复数结构时,要采用复数命名法。例:scripts, styles, ima...
  • fuyifang
  • fuyifang
  • 2015-08-27 22:27:58
  • 1586

腾讯大数据平台质量保障之道

本文转载自腾讯大数据官方微信,文章为大家介绍了腾讯在大数据测试和平台建设方面的一些做法和经验。原文如下。 引言 大数据时代,业界各巨头都在投入重兵打造自己的大数据平台,分析挖掘蕴藏...
  • test_soy
  • test_soy
  • 2016-11-30 16:07:58
  • 1970

XML 命名空间提供了一种避免元素命名冲突的方法。

XML 命名空间提供了一种避免元素命名冲突的方法。---------------------------------------------------------------------------...
  • cyp403
  • cyp403
  • 2005-05-16 13:34:00
  • 2460

如何提高数据质量?

转载请注明出处: 如何提高数据质量? 大数据的时代,数据资产及其价值利用能力逐渐成为构成企业核心竞争力的关键要素;然而,大数据应用必须建立在质量可靠的数据之上才有意义,建立在...
  • qq_36852006
  • qq_36852006
  • 2017-08-16 11:25:33
  • 451
收藏助手
不良信息举报
您举报文章:【数据质量】一种合理的指标命名方式
举报原因:
原因补充:

(最多只允许输入30个字)