【数学建模】线性规划

1.线性规划简介

线性规划(LP)是数学规划的一个分支。

这里写图片描述

x1,x2为决策变量,约束条件记为s.t.(subject to)。

2.线性规划的matlab标准形式

线性规划的目标函数可以求最大值也可以求最小值,约束条件的不等号可以是小于号也可以是大于号,因此在matlab中给出了统一形式。

这里写图片描述

其中c和x均为n维列向量,A、Aeq为适当维数(列数与x维数相同,行数与约束条件数相同),b、beq为适当维数的列向量(维数与约束条件数相同)。

例如:
max  cTx  s.t.   Axb  m a x     c T x     s . t .       A x ≥ b  

matlab中为:
min  cTx  s.t.   Axb  m i n     − c T x     s . t .       − A x ≤ b  

3.线性规划中解的概念

可行解:满足约束条件的 解x = (x1,x2…xn),称为线性规划问题的可行解,从而使目标函数达到最大值或者最小值的可行解称为最优解。
可行域:所有可行解构成的集合称为问题的可行域,记为R。

4.一般的线性规划问题

在一般的n维空间中,满足 ni=1aixi = b ∑ i = 1 n a i x i   =   b 的点集称为一个超平面,而满足 ni=1aixi  b ∑ i = 1 n a i x i   ≥   b (或者 ni=1aixi  b ∑ i = 1 n a i x i   ≤   b )的点集称为一个半平面,若干个半平面的交集称为多胞形,有界的多胞形称为多面体。因此线性规划的可行域必定为多胞形(空集也视为多胞形)。若该区域R为凸集,则凸集中的任意两点的连线必然在该凸集中,若x为区域R的极点,则x不能位于R中的任意两点的连线上。

5.matlab中线性规划求解过程

① 利用linprog函数返回最小值解向量。
② value = c’ * x求最小值。

基本函数形式是 linprog(c,A,b) , c用于确定等值线(列向量),返回值为向量x。
其他的函数形式:
[x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,x0,OPTIONS)
x0为向量x的初始值,一般使用zeros()函数 初始化,LB和UB分别是向量x的下界向量和上界向量。返回值为fval(目标函数c’ * x的值)。

6.常见技巧

问题为:

min|x1|+|x2|++|xn|  s.t.  Axb  min | x 1 | + | x 2 | + … + | x n |     s . t .     A x ≤ b  
事实上,对于任意的 xi x i ,存在 ui,vi u i , v i 满足:
xi=uivi  ,  |xi|=ui+vi x i = u i − v i     ,     | x i | = u i + v i
ui=(xi+|xi|2),vi=(|xi|xi2) u i = ( x i + | x i | 2 ) , v i = ( | x i | − x i 2 ) 即可满足。

转换为:
min  ni=1(ui+vi) m i n     ∑ i = 1 n ( u i + v i )
s.t.{A(uivi)b,u,v0, s . t . { A ( u i − v i ) ≤ b , u , v ≥ 0 ,

7.运输问题(产销平衡)

这里写图片描述

8.指派问题

1.数学模型
这里写图片描述
这里写图片描述

2.利用匈牙利算法
算法主要思想:如果系数矩阵中C=( cij c i j )一行(或一列)中每一个元素都加上或减去同一个数,得到新矩阵B,则以B或C为系数矩阵的指派问题具有相同的最优指派。
最优指派的结果是一个2行n列的行列式,第一行为第i人,第二行为被指派的地点。
求解中心:变换出n个不同行不同列的零元素。

数学建模中的线性规划模型是一种用于寻找在一组线性约束条件下,使得某个线性目标函数达到最大或最小值的数学方法。线性规划广泛应用于资源优化配置、生产计划、物流管理、金融投资等领域。一个标准的线性规划问题通常包含以下几个要素: 1. 决策变量:在问题中需要确定的变量,通常表示为x1, x2, ..., xn。 2. 目标函数:需要优化的线性函数,例如最大化利润或最小化成本,表达式为Z = c1x1 + c2x2 + ... + cnxn。 3. 约束条件:限制决策变量的线性不等式或等式,例如ax1 + bx2 ≤ c,或者dx1 + ex2 = f。 4. 非负性条件:在大多数实际问题中,决策变量不能为负,即xi ≥ 0。 线性规划问题可以通过图解法、单纯形法、内点法等多种算法求解。其中,单纯形法是最常用的算法之一,它通过迭代方式在可行解的顶点之间移动,逐步逼近最优解。 解决线性规划问题时,可能遇到的几个关键概念包括: - 可行域:满足所有线性约束条件的解空间。 - 基可行解:在可行域中的顶点或边界点,且决策变量的个数等于约束条件的数量减一。 - 退化基可行解:如果某个基可行解中有超过一个数量的非基变量为零,则称该解为退化的。 - 无界解:如果目标函数在可行域内可以无限增大或减小,则称该线性规划问题有无界解。 线性规划模型的建模和求解对于理解和运用线性关系、优化决策等方面具有重要意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值