Tensorboard是配合Tensorflow使用的一个可视化工具,可以将Tensorflow框架的流图(Tensor–张量)结构可视化的显示出来。下面以mnist手写数据集进行讲解Tensorboard的使用流程。
1.初始化
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 读取mnist数据集
mnist = input_data.read_data_sets('data/mnist_data/', one_hot=True)
# 可变session会话
sess = tf.InteractiveSession()
2.生成数据
x = tf.placeholder(tf.float32, [None, 784], name='input-data')
w = tf.Variable(tf.zeros([784, 10]),name='weights')
b = tf.Variable(tf.zeros([10]), name='biases')
y_ = tf.placeholder(tf.float32, [None, 10], name='output-data')
3.定义scope,所有在结构中显示的部分都是有tf.name_scope
定义的
# softmax激活
with tf.name_scope('Wx_b'):
y = tf.nn.softmax(tf.matmul(x, w) + b)
# 定义交叉熵
with tf.name_scope('cent'):
cross_entropy = -tf.reduce_mean(y_ * tf.log(y))
# 在tensorboard中绘制曲线图等都是使用tf.summary类(注意区分tensorflow的版本,不一样的版本的这个类可能不一样)
cent_summary = tf.summary.scalar('cross_entropy', cross_entropy)
# 定义梯度下降训练器
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.05).minimize(cross_entropy)
# 定于测试部分
with tf.name_scope('test'):
prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
# cast将布尔值转化为浮点数
accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32))
accuracy_summary = tf.summary.scalar('accuracy', accuracy)
4.合并所有的所有summary操作
merge = tf.summary.merge_all()
5.定义文件流(会产生一个tfevents文件,也是后面进行激活tensorboard的一种特殊数据文件)
writer = tf.summary.FileWriter('tmp/mnist_logs', sess.graph_def)
6.sess初始化所有变量,并开始迭代训练和测试
# 定义初始化对象,然后自己run(),就可以在InteractiveSession中激活
init = tf.initialize_all_variables().run()
for i in range(1000):
if i % 10 == 0:
feed = {x: mnist.test.images, y_: mnist.test.labels}
# 在session中同时运行merge(合并操作)与accuracy(精确率计算)
result = sess.run([merge, accuracy], feed_dict=feed)
merge_ = result[0]
accuracy_ = result[1]
writer.add_summary(merge_, i)
print('The ', i, 'accuracy is ',accuracy_)
else:
batch_xs, batch_ys = mnist.train.next_batch(100)
feed = {x: batch_xs, y_: batch_ys}
sess.run(train_step, feed_dict=feed)
print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}))
7.启动tensorboard
在tfevent
文件夹下面,输入
tensorboard --logdir path
其中,path是路径。
8.在线效果展示