【Tensorflow】Tensorboard的使用

Tensorboard是配合Tensorflow使用的一个可视化工具,可以将Tensorflow框架的流图(Tensor–张量)结构可视化的显示出来。下面以mnist手写数据集进行讲解Tensorboard的使用流程。
1.初始化

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 读取mnist数据集
mnist = input_data.read_data_sets('data/mnist_data/', one_hot=True)
# 可变session会话
sess = tf.InteractiveSession()

2.生成数据

x = tf.placeholder(tf.float32, [None, 784], name='input-data')
w = tf.Variable(tf.zeros([784, 10]),name='weights')
b = tf.Variable(tf.zeros([10]), name='biases')
y_ = tf.placeholder(tf.float32, [None, 10], name='output-data')

3.定义scope,所有在结构中显示的部分都是有tf.name_scope定义的

# softmax激活
with tf.name_scope('Wx_b'):
    y = tf.nn.softmax(tf.matmul(x, w) + b)
# 定义交叉熵
with tf.name_scope('cent'):
    cross_entropy = -tf.reduce_mean(y_ * tf.log(y))
    # 在tensorboard中绘制曲线图等都是使用tf.summary类(注意区分tensorflow的版本,不一样的版本的这个类可能不一样)
    cent_summary = tf.summary.scalar('cross_entropy', cross_entropy)
# 定义梯度下降训练器
with tf.name_scope('train'):
    train_step =  tf.train.GradientDescentOptimizer(0.05).minimize(cross_entropy)
# 定于测试部分  
with tf.name_scope('test'):
    prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    # cast将布尔值转化为浮点数
    accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32))
    accuracy_summary = tf.summary.scalar('accuracy', accuracy)

4.合并所有的所有summary操作

merge = tf.summary.merge_all()

5.定义文件流(会产生一个tfevents文件,也是后面进行激活tensorboard的一种特殊数据文件)

writer = tf.summary.FileWriter('tmp/mnist_logs', sess.graph_def)

6.sess初始化所有变量,并开始迭代训练和测试

# 定义初始化对象,然后自己run(),就可以在InteractiveSession中激活
init = tf.initialize_all_variables().run()

for i in range(1000):
    if i % 10 == 0:
        feed = {x: mnist.test.images, y_: mnist.test.labels}
        # 在session中同时运行merge(合并操作)与accuracy(精确率计算)
        result = sess.run([merge, accuracy], feed_dict=feed)
        merge_ = result[0]
        accuracy_ = result[1]
        writer.add_summary(merge_, i)
        print('The ', i, 'accuracy is ',accuracy_)
    else:
        batch_xs, batch_ys = mnist.train.next_batch(100)
        feed = {x: batch_xs, y_: batch_ys}
        sess.run(train_step, feed_dict=feed)
print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}))

7.启动tensorboard
tfevent文件夹下面,输入

tensorboard --logdir path

其中,path是路径。
8.在线效果展示

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值