tensorflow之tensorboard

TensorBoard是TensorFlow的数据可视化工具,它在TensorFlow安装时自动安装。随着版本变化,记录训练过程的API有所调整。主要使用tf.summary来记录,如tf.summary.histogram用于绘制直方图,tf.summary.scalar用于统计标量。此外,tf.summary.all_summary_ops收集所有摘要,tf.summary.FileWriter创建写入文件夹,记录训练和测试结果。通过这些工具,可以有效地监控和理解模型的训练过程。
摘要由CSDN通过智能技术生成

tensorflow之tensorboard

前言

tensorboard是TensorFlow中自带的一个数据可视化工具,在安装TensorFlow的同时,系统会自动安装。

在不同的TensorFlow版本中,记录训练过程所需要的API也不一样,1.3主要需要summary,而之前的版本,则直接封装在了tf下面

在使用tensorboard时,必须使用name_scope来创建一个域,然后在每个域内定义变量的名称。tf.summary中提供了一系列函数,用来帮忙统计。

  • histogram用来绘制直方图。
  • scale用来统计标量

除此之外,还需要用到

  • tf.summary.merge_all用来一次性生成所有摘要
  • tf.summary.Filewriter用来生成一个写入的文件夹(训练结果和测试结果可以放在不同的文件夹中)
  • add_summary讲新生成的summer写入记录器

代码

# -*- coding: utf-8 -*-
"""
Created on Wed Oct 25 11:41:50 2017

@author: Sky_Gao
"""


import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
max_steps = 100
learning_rate = 0.001
dropout = 0.9
data_dir = 'MNIST_data/'
log_dir = 'mnist_with_summaries/'
# 定义一个存储的目录

mnist = input_data.read_data_sets(data_dir, one_hot=True)
sess = tf.InteractiveSession()

def weight_variable(shape):
    inital = tf.truncated_normal(shape=shape, stddev=0.1)
    return tf.Variable(inital)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值