tensorflow之tensorboard
前言
tensorboard是TensorFlow中自带的一个数据可视化工具,在安装TensorFlow的同时,系统会自动安装。
在不同的TensorFlow版本中,记录训练过程所需要的API也不一样,
1.3
主要需要summary
,而之前的版本,则直接封装在了tf
下面
在使用tensorboard时,必须使用name_scope
来创建一个域,然后在每个域内定义变量的名称。tf.summary
中提供了一系列函数,用来帮忙统计。
histogram
用来绘制直方图。scale
用来统计标量
除此之外,还需要用到
tf.summary.merge_all
用来一次性生成所有摘要tf.summary.Filewriter
用来生成一个写入的文件夹(训练结果和测试结果可以放在不同的文件夹中)add_summary
讲新生成的summer
写入记录器
代码
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 25 11:41:50 2017
@author: Sky_Gao
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
max_steps = 100
learning_rate = 0.001
dropout = 0.9
data_dir = 'MNIST_data/'
log_dir = 'mnist_with_summaries/'
# 定义一个存储的目录
mnist = input_data.read_data_sets(data_dir, one_hot=True)
sess = tf.InteractiveSession()
def weight_variable(shape):
inital = tf.truncated_normal(shape=shape, stddev=0.1)
return tf.Variable(inital)