一个完美二叉树每一层的节点数是一个等比数列,其中,q=2;
则第一层有 a1 = 1 个节点,
第k层有 ak = a1* 2(k-1) = 2(k-1) 节点
则,根据等比数列求和公式,一个层数为 n 的满二叉树的节点树为:2n - 1;
如果采用顺序储存方式有,
第k层的最后一个节点的索引值为:2k - 2;
第k+1层的第一个节点的索引值为:2k - 1;
第k层的第一个节点的索引值为:2k-1 - 1;
假设现在一个节点N位于第k层的第m个节点,即索引值为:i = 2k-1 - 1 + m ;
则,N的左子树(在第k+1层)的索引值为:2k - 1 + 2 * m = 2k - 2+ 2 * m + 1 = 2 * ( 2k-1 - 1 + m) + 1= 2 * i + 1;
对于右子树的索引易得,2 * i + 1 + 1 = 2 * i + 2;