1. 理解行业和数据类型
- 研究金融产品:了解股票、基金和债券的基本概念,包括它们的工作原理、市场影响因素、以及相关的经济指标。
- 了解卖方研报:熟悉卖方研报的结构和内容,包括它们是如何影响市场的。
卖方研报服务于买方,主要提供有价值的观点,数据。追踪热点事件
买房研报服务于基金经理,提出明确的买入卖出建议,获得基金经理的认可
2. 数据技能
- 数据采集:学习如何从不同的数据源(如APIs, 金融市场数据库等)收集数据。
- 数据清洗和处理:熟练使用Excel和SQL进行数据清洗,例如删除重复项、处理缺失值、格式化数据等。
- 编程语言:如果涉及编程,Python是金融数据分析中常用的语言。了解Python中用于数据分析的库,如pandas、numpy、scipy和matplotlib。
- 统计分析:掌握基本的统计分析技能,能够进行数据的描述性分析、相关性分析等。
3. 实际案例研究
- 案例分析:尝试找到一些相关的数据分析案例,如股票市场趋势分析、基金性能比较等,自己动手分析。
- 项目展示:如果你有相关的项目经验,准备好在面
试中展示你的项目,特别是那些可以证明你数据处理和分析能力的项目。
4. 工具和软件熟练度
- Excel:确保你熟悉高级Excel功能,如数据透视表、高级筛选技巧、宏等。
- SQL:准备展示你如何使用SQL进行复杂查询,包括联接、子查询、窗口函数等。
- Python:演示你如何使用Python进行数据清洗、处理和可视化,熟悉如Pandas和Matplotlib的库非常重要。
5. 准备面试问题
- 技术问题:准备回答关于你如何处理和分析大型数据集的问题,包括具体的方法和工具。
- 行为问题:准备讨论你以往如何成功地完成数据项目,处理困难或冲突,并提高数据准确性和效率的例子。
- 行业相关问题:可能会问到一些关于当前金融市场趋势的问题,或是你对未来金融技术的看法。