洛谷P1082 [NOIP 2012 提高组] 同余方程——线性同余方程

题目来源

P1082 [NOIP 2012 提高组] 同余方程 - 洛谷

题目描述

求关于 x 的同余方程 ax≡1(modb) 的最小正整数解。

输入格式

一行,包含两个整数 a,b,用一个空格隔开。

输出格式

一个整数 x0​,即最小正整数解。输入数据保证一定有解。

输入输出样例

输入 #1

3 10

输出 #1

7

说明/提示

数据规模与约定

  • 对于 40% 的数据,2≤b≤1,000;
  • 对于 60% 的数据,2≤b≤50,000,000;
  • 对于 100% 的数据,2≤a,b≤2,000,000,000。

 算法分析

 同余

设a,b为整,m为正整数,则把a和b模m同余记为a≡b(mod m),这个算式相当于a=b+my,其中y∈Z

此题其实就是求ax=1+by,可以转换成ax+by=1的最小正整数解,而我们要求x的最小正整数解,就要套一个公式,Xmin=(x0 mod T+T) mod T,其中T=b/gcd(a,b)。

故此题代码如下

code

#include <bits/stdc++.h>
using namespace std;
int exgcd(long long a,long long b,long long &x,long long &y){//十年oi一场空,不开long long见祖宗
	if(b==0){
		x=1,y=0;
		return a;
	}
	int d=exgcd(b,a%b,y,x);
	y-=a/b*x;
	return d;
}

int main() {
	long long a,b,x,y;
	cin>>a>>b;
	exgcd(a,b,x,y);
	x=(x%b+b)%b;
	cout<<x<<endl;
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值