题目来源
P1082 [NOIP 2012 提高组] 同余方程 - 洛谷
题目描述
求关于 x 的同余方程 ax≡1(modb) 的最小正整数解。
输入格式
一行,包含两个整数 a,b,用一个空格隔开。
输出格式
一个整数 x0,即最小正整数解。输入数据保证一定有解。
输入输出样例
输入 #1
3 10
输出 #1
7
说明/提示
数据规模与约定
- 对于 40% 的数据,2≤b≤1,000;
- 对于 60% 的数据,2≤b≤50,000,000;
- 对于 100% 的数据,2≤a,b≤2,000,000,000。
算法分析
同余
设a,b为整,m为正整数,则把a和b模m同余记为a≡b(mod m),这个算式相当于a=b+my,其中y∈Z
此题其实就是求ax=1+by,可以转换成ax+by=1的最小正整数解,而我们要求x的最小正整数解,就要套一个公式,Xmin=(x0 mod T+T) mod T,其中T=b/gcd(a,b)。
故此题代码如下
code
#include <bits/stdc++.h>
using namespace std;
int exgcd(long long a,long long b,long long &x,long long &y){//十年oi一场空,不开long long见祖宗
if(b==0){
x=1,y=0;
return a;
}
int d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main() {
long long a,b,x,y;
cin>>a>>b;
exgcd(a,b,x,y);
x=(x%b+b)%b;
cout<<x<<endl;
return 0;
}