目录
一、进制概念。
进制就是人们规定的一种进位方式。比如十进制就是满十进一,二进制就是满二进一……x进制就是满x进一。
二、常见进制。
常见进制主要有以下四种:
- 二进制 Binary( 0 / 1)
- 八进制 Octal( 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7)
- 十进制 Decimal( 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9)
- 十六进制 Hexadecima( 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / A / B / C / D / E / F)
下图表示一些简单数字的对应关系:
二进制 | 八进制 | 十进制 | 十六进制 |
---|---|---|---|
0000 | 0 | 0 | 0 |
0001 | 1 | 1 | 1 |
0010 | 2 | 2 | 2 |
0011 | 3 | 3 | 3 |
0100 | 4 | 4 | 4 |
0101 | 5 | 5 | 5 |
0110 | 6 | 6 | 6 |
0111 | 7 | 7 | 7 |
1000 | 10 | 8 | 8 |
1001 | 11 | 9 | 9 |
1010 | 12 | 10 | A |
1011 | 13 | 11 | B |
1100 | 14 | 12 | C |
1101 | 15 | 13 | D |
1110 | 16 | 14 | E |
1111 | 17 | 15 | F |
三、进制转换。
其他进制转十进制
整数部分
如果要把二进制数1011转化成十进制,那么就要把第1位数1乘上2的0次方(1) + 第2位数1乘上2的1次方(2) + 第3位数0乘上2的2次方(0) + 第4位数1乘上2的3次方(8) = 11
所以根据上面的算式我们可以列出:x进制转化成十进制的值 = 第1位乘x的1 - 1次方 + …… + 第n位乘x的n - 1次方 = 第i位 * x^i + 第i位 * x^i + …… + 第n位 * x^n这个式子
八进制同理:
小数部分
我们用二进制举例子,第一位小数就是二的负一次方*1,也就是1 / 二的一次方,二分之一,剩下的以此类推,把算完的结果加起来,得到5.875。
八进制也一样:
十进制转其他进制
口诀:整数除x逆取余,小数乘x顺取整 。
整数部分
十进制转其他进制整数部分就是不断的除x(x进制),直到被除数为0,从下往上把余数连起来,所以有一个口诀叫:
整数除x逆取余。
小数部分
十进制转其他进制小数部分就是不断的乘x(x进制),直到乘数为1,从上往下把整数部分数连起来,所以有一个口诀叫:
小数乘x顺取整
二进制和八、十六进制互转
三位八进制 = 一位八进制,如果不够三位要补0,具体见下表:
二进制 | 八进制 |
---|---|
0000 | 0 |
0001 | 1 |
0010 | 2 |
0011 | 3 |
0100 | 4 |
0101 | 5 |
0110 | 6 |
0111 | 7 |
八进制转二进制同理:
十六进制转二进制和八进制差不多,只不过十六进制是四位二进制=一位十六进制
四位二进制 = 一位十六进制,具体见下表:
二进制 | 十六进制 |
---|---|
0000 | 0 |
0001 | 1 |
0010 | 2 |
0011 | 3 |
0100 | 4 |
0101 | 5 |
0110 | 6 |
0111 | 7 |
1000 | 8 |
1001 | 9 |
1010 | A |
1011 | B |
1100 | C |
1101 | D |
1110 | E |
1111 | F |
作者10岁的小Tyler