自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 问答 (1)
  • 收藏
  • 关注

转载 协同过滤 Collaborative Filtering(学习笔记)

Collaborative Filtering协同过滤简述1.思想2.相似度的计算基于用户的协同过滤1.原理实现步骤python代码 协同过滤简述 1.思想 推荐算法是机器学习算法的一种。推荐算法有很多,其中协同过滤算法便是其中经典的一种。当今仍在大量使用。 具体来说,协同过滤的思路是通过群体的行为来找到某种相似性(用户之间的相似性或者标的物之间的相似性),通过该相似性来为用户做决策和推荐。 一般来说,协同过滤推荐分为三种类型: 基于用户(user-based)的协同过滤 基于项目(item-based

2020-07-28 11:53:10 713

转载 矩阵分解(学习笔记)

矩阵分解一级目录二级目录三级目录 一级目录 二级目录 三级目录

2020-07-22 19:36:01 669

转载 K-means算法(学习笔记)

K-means聚类K-means算法原理算法要点算法实现(python) 聚类 无监督学习: 训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础 聚类分析 是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。聚类旨在发现有用的对象簇(cluster)。 K-means应用的则为基于原型的簇。 基于原型的 簇是对象的集合,其中每个对象到定义该簇的原型的距离比其他簇的原型距离更近,如(b)所示的原型

2020-07-18 11:05:56 486

转载 KNN算法(学习笔记)

KNN学习笔记基本概念分类算法 基本概念 分类 算法 """ 步骤 1.数据准备 2.计算距离 3.寻找邻居 4.决策分类 """ import numpy as np from matplotlib import pyplot as plt #计算距离公式 def d_man(x, y):#曼哈顿 d = np.sum(np.abs(x - y)) return d def d_euc(x, y):#欧式距离 d = np.sqrt(np.sum(np.square(x -

2020-07-16 18:49:57 730

转载 线性回归(学习笔记)

线性回归原理 一元线性回归:只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示 多元线性回归:回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系 一、一元线性回归 从一堆训练集中去算出一条直线,使数据集到直线之间的距离差最小。 步骤: python代码: ...

2020-07-12 22:26:05 213

转载 梯度下降(学习笔记)

应用: 梯度下降法(Gradient Descent):又称最速下降法,是迭代法的一种,可用于求解机器学习算法的模型参数(即无约束优化问题)具体来讲可用来求解损失函数的最小值,也可求解最小二乘问题 分类: 批量梯度下降 BGD :使用全部样本构建了损失函数(在线性回归中为SSE),再根据损失函数梯度下降求得系数(权值); 随机梯度下降 SGD:每次只使用一个样本点得到损失函数的公式,根据梯度下降求解参数,再随机选择样本进行系数更新; 小批量梯度下降 MBGD:每次使用部分样本计算得到损失函数,根据梯度下降

2020-07-10 20:40:09 460

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除