分布式鲁棒优化初学1

文章探讨了处理分布式系统中存在不确定性因素的优化问题。对于不确定项在目标函数中的情况,可以通过转化为minmax问题并求对偶来解决。而对于不确定项不在目标函数中的问题,建议使用拉格朗日松弛或将问题转化为机会约束来处理。这些方法旨在确保系统的稳健性和性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

针对不同类型的分布式鲁棒优化问题,求解思路: 

1.1不确定项在目标函数中

模型1:

min(Cx+maxEminf(x))

运用最大化,最小化,maxmin转化为minmax即可,然后对max求对偶,即可统一为min问题。

模型2:

 min(Cx+minEmaxf(x))

此类问题,无法运用1中方式转化

可以变为:

min(Cx+Ef(x))

然后对式子中最大值问题求对偶,即可转换为min问题

1.2不确定项不在目标函数中:

1.通过拉格朗日松弛的方式,将含有不确定性的约束放入目标函数中即可。

2.优化模型。

3.通过机会约束的方式。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值