tensorflow中的关键字global_step使用

全局步数(global_step)在TensorFlow中常用于滑动平均和学习率调整,它在优化器如tf.train.GradientDescentOptimizer中作为参数使用,系统自动从1开始递增。学习率随着global_steps的增加而变化,展示了训练过程。
摘要由CSDN通过智能技术生成

global_step经常在滑动平均,学习速率变化的时候需要用到,这个参数在tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_steps)里面有,系统会自动更新这个参数的值,从1开始。

例如:

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  

x = tf.placeholder(tf.float32, shape=[None, 1], name='x')
y = tf.placeholder(tf.float32, shape=[None, 1], name='y')
w = tf.Variable(tf.constant(0.0))

global_steps = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(0.1, global_steps, 10, 2, staircase=False)
loss = tf.pow(w*x-y, 2)

train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_steps)

with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	for i in range(10):
		sess.run(train_step, feed_dict={x:np.linspace(1,2,10).reshape([10,1]),
			y:np.li
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值