tensorflow resue关键字

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
 
with tf.variable_scope('V1'):
	a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
 
with tf.variable_scope('V1', reuse=True):
	a3 = tf.get_variable('a1')
 
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	print a1.name
	print sess.run(a1)
	print a3.name
	print sess.run(a3)

输出:

V1/a1:0
[ 1.]
V1/a1:0
[ 1.]

分析:变量a1和a3一样的变量,名字和值都是一样的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值