高斯消元模板



先处理成上三角矩阵,然后消元

#include <stdio.h>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
#define N 1005
#define M 505
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
const int INF = 1<<30;
const double eps = 1e-6;
int n,m;
double a[N][M],x[M];
void swapLine(int i,int j){
    if(i == j) return;
    for(int k = 0;k <= m;k++) swap(a[i][k],a[j][k]);
}
void print_a(){
    printf("*********************\n");
    for(int i = 0;i < n;i++){
        for(int j = 0;j < m;j++) printf("%lf ", a[i][j]);
        printf("%lf\n", a[i][m]);
    }
}
int gauess(){
    for(int i = 0;i < m;i++){
        bool flag = false;
        for(int j = i;j < n;j++)
            if(fabs(a[j][i]) > eps){
                flag = true;
                swapLine(i,j);
                break;
            }
        if(!flag) return 2;
        for(int j = i+1;j < n;j++){
            double tmp = a[j][i]/a[i][i];
            //printf("tmp:%lf\n", tmp);
            for(int k = 0;k <= m;k++)
                a[j][k]=a[j][k]-a[i][k]*tmp;
        }
        //print_a();
    }
    for(int i = 0;i < n;i++){
        bool allZero = true;
        for(int j = 0;j < m;j++)
            if(fabs(a[i][j]) > eps){
                allZero = false;
                break;
            }
        if(allZero && fabs(a[i][m]) > eps) return 0;
    }
    for(int i = m-1;i >= 0;i--){
        double tmp = a[i][m];
        for(int j = i+1;j < m;j++)
            tmp -= a[i][j]*x[j];
        x[i] = tmp/a[i][i];
    }
    return 1;
}
int main(){
    while(~scanf("%d %d",&m,&n)){
        for(int i = 0;i < n;i++)
            for(int j = 0;j <= m;j++) scanf("%lf",&a[i][j]);
        int ans = gauess();
        if(ans != 1)
            printf("%s\n", ans ? "Many solutions" : "No solutions");
        else
            for(int i = 0;i < m;i++)
                printf("%d\n", (int)(x[i]+0.5));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值