全世界只有3.14 % 的人关注了
爆炸吧知识
大家都喜欢《蒙娜丽莎的微笑》,但你知道她为什么好看吗?
《蒙娜丽莎的微笑》
没错,她符合黄金分割法0.618原则嘛!
但你知道这世界上还有一个数列版的黄金分割法的吗?
这个数列就是斐波那契数列:相邻的两个斐波那契数越大,他们的比值就越接近0.618.
今天,小天就和大家介绍一下这个发现数列版黄金分割法的大佬:斐波那契。
四处跑的童年
斐波那契,全名留那多·斐波那契,约1170年生于意大利比萨城,十二、十三世纪最著名的数学家之一。
斐波那契画像
说起斐波那契和数学的缘分,那可真是天定良缘!
斐波那契生于比萨城的商业中心,其父还是个商人,整天和数字打交道。
斐父还是个特别重视斐波那契教育问题的人,致力于把斐波那契打造成一个数学家!
遵循教育要从娃娃抓起的原则,斐父决定把斐波那契带在身边言传身教。
而商人的身份又使得斐父经常出差,斐波那契小小年纪就过上了背井离乡四处飘零的生活。
斐波那契先跟着父亲到了北非的阿尔及利亚,然后就在阿尔及利亚上了好几年学。
后来斐父四处做生意,斐波那契就跟着父亲先后跑遍了很多国家:埃及、叙利亚、希腊、西西里和普罗斯等。
几乎每到一个地方,斐波那契就有一个老师。
好在,斐波那契并不厌恶父亲对自己的教育方式,还特别喜欢数学。
在埃及的时候,斐波那契就跟着阿拉伯人学习了欧洲人都不会的数字:印度-阿拉伯数字。
当时的欧洲人使用的可不是阿拉伯数字,而是原始的罗马数字。
而穆斯林世界已经从印度人那里学到了一种新的数字(阿拉伯数字),斐波那契就跟着阿拉伯人学到了这种数字。
学会了以后小斐波那契还不满足。
小斐波那契“货比三家”,把学到的不用国家在商业上的算术体系进行了比较。
最后发现:还是阿拉伯数字最方便!
1200年左右,斐波那契回到故土(比萨),开始专心写起了自己在外面学到的数学知识。
两年后,斐波那契写成了自己的第一本著作:《算盘书》
但这本书居然是挂羊头卖狗肉!
内容与书名严重不符:算盘两个字,不只是指罗马算盘或沙盘,而是指一般的计算。
再看看这本书,书名虽然简单,这本书却还是欧洲中世纪最重要的数学著作,还被各大学校作为教材使用了200年之久
看来是本厉害的书。
厉害的书,我们当然得介绍介绍他的内容!
在书的开篇,斐波那契就大张旗鼓地搬运了“阿拉伯数字。”
不信的话看看卷首语:
下列的数是印度人的九个数字:
987654321
下面将证明:用这九个数字连同阿拉伯人称作零的符号“0’’,就能写出任何数。
从此,欧洲终于有了阿拉伯数字!
而一、两个世纪后,阿拉伯数字还占领了欧洲世界。
因为欧洲人发现阿拉伯数字实在是太好用了,好写好记,就果断地放弃了原始的罗马数字。
且这本书搬运了阿拉伯数字还不够,还“抄”了中国《孙子算法》的题目。
不信的话先看看时代:《算盘书》13世纪(中国南宋时期)著成,而《孙子算法》则是4、5世纪著成(中国南北朝时期)。
时间成立,我们再来看看内容。
说他“抄”我们当然不会瞎说,《算盘书》里很多题都和《孙子算法》相似,有些甚至连数值都是一样的。
比如《孙子算法》里面的追及问题、排水问题、不定问题、剩余问题和百鸡问题等。
这里小天跟大家说说剩余问题吧。
《孙子算法》的题目如下:
今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?
小天知道大家不懂是什么意思,那就来看看《算盘书》里的题目吧:
一个不超过105的数分别被3、5、7除,余数是2、3、4,求这个数。
大家略微思考一下就能发现:除了有105的限制,这分明就是一样的题啊!
而且小天还告诉大家,不光题相似,连解法都一样。
《孙子算法》里的解法:
三、三数之剩二,置一百四十;五、五数之剩三,置六十三;七、七数之剩二,置三十,并之,得二百三十三。以二百一十减之,即得。凡三、三数之剩一,则置七十;五、五数之剩一,则置二十一;七、七数之剩一,即置十五。一百六以上,一百五减之,即得。
《孙子兵法》中没有105的限制,所以有两个“即得”,第一个“即得”是23,第二个“即得”是53(计算过程略过,大家翻译一下古文就是计算过程啦,还可以参考下面的算法)。
而《算盘书》的解法:
2 X 70+3X21+4x15-2X105=53
《算盘书》有105的限制,就只有一个答案:53
但大家略微动一下小脑袋,是不是又有大发现呢?
没错,《算盘书》里的这道题就是《孙子算法》里同类型题的缩减版!
斐波那契数列
但这本书里面真正厉害的不在于引进了“阿拉伯数字”,也不在于引进了中国古代的数学思想。
而是在于引出了斐波那契数列!
可谁又会想到,斐波那契数列的前身,居然是几只兔子呢!
怪就怪斐波那契偏偏用兔子来设问:
假设一对大兔子每一个月可以生一对小兔子,而小兔子出生后两个月就可以生兔子。(假设产一对兔必有一雄一雌,所有兔子都可相互交配且无死亡)那么从一对大兔子开始,一年后能繁殖成多少对兔子?
兔子就兔子吧,数学是无界的!我们该算还是得算!
通过计算,我们发现第2个月到第12月兔子的数量分别是:
第X月 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
兔子(对) | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 |
再看看这些数,不得了了!
这是个有规律的数列!
1,2,3,5,8,13,21,34,….每一项(从第三项起)都是前两项的和!
就这样,斐波那契数列出现了:每一项(从前三项起)都是前两项的和的数列就是斐波那契数列。
叫斐波那契数列的原因也很简单:既然是从斐波那契的兔子问题总结出来的,就叫它斐波那契数列。
既然发现了这个数列,当然得应用起来了!
先看看大家都关心的《蒙娜丽莎的微笑》吧。
《蒙娜丽莎的微笑》怎么会和斐波那契数列有关系呢?
因为斐波那契数列简直就是数列版的黄金分割啊!
当斐波那契数列的数量越接近无穷大时,前一项和后一项的比就越接近黄金分割的0.618!
不懂的话,小天只能将斐波那契数列图形化了。
不信的话,我们用《蒙娜丽莎的微笑》来看看
是不是一样的呢?
后来,植物学家又发现,很多植物的果实、萼片、果实的数目甚至是排列的方式都符合菲波那切数列。
比如:玫瑰花呀!
不单单是玫瑰,还有菠萝、挪威云杉、落叶松松果、菊花和树干的生长等。
很多植物都这样,小天在这就不一一举例了,实在是举不过来了!
而运用得最接地气的,就是《奇葩说》上的萧亚轩男友数量了。
问题多了就成书
发现斐波那契数列后,斐波那契并没有停止研究的步伐。
1220年,斐波那契完成了《几何实用》。
不久后,又相继写成《通信录》和《平方数书》。
1225年时,还写出了《象限仪书》。
同年,恰逢比萨市举行数学竞赛,而且是当众解答的那种。
斐波那契一个看热闹的,却因太有名气遭到了徘德烈第二(罗马帝国皇帝)和他的一批数学家的挑衅。
他们以一个自认为很难的数学问题挑衅斐波那契。
但却被斐波那契轻易解答了。
后来,又有很多人或来挑衅,或来请教。
斐波那契怒了,干脆就把这些想问难他的或是想问他的问题全部写成了书。
于是便有了两本书的出世:《花朵》和《给帝国哲学家狄奥多鲁斯的一封信》
几年后,斐波那契继续呆在比萨,做着带薪的公共服务。
大约在1250年的时候,斐波那契离世。
有些人说,斐波那契一生最大的贡献,就是给欧洲带去了阿拉伯数字。
G·卡尔诺说过:“我们可以假定,所有我们掌握的希腊之外的数学知识都是由于斐波那契的存在而得到的”。
但在小天看来,斐波那契最大的贡献还是给我们带来了菲波那契数列,让我们再一次发现:
哼,数学有点美,也没那么难嘛!
写在最后
用数学理解世间万物,用理性思维寻找解决问题的新角度。所以,超模君为大家准备了《数学之旅》!
在娱乐的同时,通俗易懂的感受数学之美,做到真正的寓教于乐!你还在等什么?赶紧开启你的数学之旅吧!
《数学之旅 · 闪耀人类的54位数学家》
数学艺术礼盒
指导价219
新春价139
+1元就送一沓红包
慢一秒,就容易抢不到
(点击小程序,即可购买)
本文系网易新闻·网易号“各有态度”特色内容
部分资料来源于网络
转载请在公众号中,回复“转载”
超模君每周分享来袭
????????????
“整整600页!国家奥数教头主编教材”
扫描上方二维码
回复“600”领取资料全文