快速开始:30s上手Keras
Keras的核心数据结构是“模型”,模型是一种组织网络层
的方式。Keras中主要的模型是Seqential模型, Seqential是一系列网络层按顺序构成的栈。
Seqential模型如下:
from keras.models import Seqential
model = Seqential()
将一些网络层通过 .add() 堆叠起来,就构成了一个模型:
from keras.layers import Dense, Activation
model.add(Dense(units=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(units=10))
model.add(Activation("softmax"))
完成模型的搭建后,需要用 .compile() 方法来编译模型:
model.complile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
编译模型时必须指明损失函数(loss)和优化器(optimizer),如果需要可以自己定制损失函数。
from keras.optimizers import SGD
model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01, momentum=0.9, nesterov=True))
完成模型编译后,我们在训练数据上按batch进行一定次数的迭代来训练网络:
model.fix(x_train, y_train, epochs=5, batch_size=32)
当然,我们也可以手动将一个个batch的数据送入网络中训练,这时候需要使用:
model.train_on_batch(x_batch, y_batch)
随后,用一行代码对我们的模型进行评估,看看模型的标准时候满足我们的要求:
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)
或者,可以对新的数据进行预测:
classes = model.predict(x_test, batch_size=128)
keras中文手册