关于keras

快速开始:30s上手Keras

Keras的核心数据结构是“模型”,模型是一种组织网络层


的方式。Keras中主要的模型是Seqential模型, Seqential是一系列网络层按顺序构成的栈。

Seqential模型如下:

from keras.models import Seqential
model = Seqential()
将一些网络层通过 .add() 堆叠起来,就构成了一个模型:

from keras.layers import Dense, Activation

model.add(Dense(units=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(units=10))
model.add(Activation("softmax"))
完成模型的搭建后,需要用 .compile() 方法来编译模型:
model.complile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
编译模型时必须指明损失函数(loss)和优化器(optimizer),如果需要可以自己定制损失函数。

from keras.optimizers import SGD
model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01, momentum=0.9, nesterov=True))
完成模型编译后,我们在训练数据上按batch进行一定次数的迭代来训练网络:

model.fix(x_train, y_train, epochs=5, batch_size=32)
当然,我们也可以手动将一个个batch的数据送入网络中训练,这时候需要使用:

model.train_on_batch(x_batch, y_batch)
随后,用一行代码对我们的模型进行评估,看看模型的标准时候满足我们的要求:

loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)
或者,可以对新的数据进行预测:
classes = model.predict(x_test, batch_size=128)
keras中文手册









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值