keras:model.compile损失函数

损失函数loss:该参数为模型试图最小化的目标函数,它可为预定义的损失函数名,如categorical_crossentropymse,也可以为一个损失函数。详情见losses

可用的损失目标函数:

  • mean_squared_error或mse

  • mean_absolute_error或mae

  • mean_absolute_percentage_error或mape

  • mean_squared_logarithmic_error或msle

  • squared_hinge

  • hinge

  • categorical_hinge

  • binary_crossentropy(亦称作对数损失,logloss)

  • logcosh

  • categorical_crossentropy:亦称作多类的对数损失,注意使用该目标函数时,需要将标签转化为形如(nb_samples, nb_classes)的二值序列

  • sparse_categorical_crossentrop:如上,但接受稀疏标签。注意,使用该函数时仍然需要你的标签与输出值的维度相同,你可能需要在标签数据上增加一个维度:np.expand_dims(y,-1)

  • kullback_leibler_divergence:从预测值概率分布Q到真值概率分布P的信息增益,用以度量两个分布的差异.

  • poisson:即(predictions - targets * log(predictions))的均值

  • cosine_proximity:即预测值与真实标签的余弦距离平均值的相反数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值