给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。
示例 1:
输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
示例 2:
输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。
提示:
1 <= nums.length <= 104
0 <= nums[i] <= 105
贪心
class Solution:
def canJump(self, nums: List[int]) -> bool:
pos = 0
for idx, num in enumerate(nums):
if idx > pos or pos >= len(nums) - 1:
break
pos = max(pos, idx + num)
return pos >= len(nums) - 1
虽然enumerate更加pythonic,但是实际测试enrmerate相比range更加耗时,不过差的很少,大概10ms左右,不影响AC
class Solution:
def canJump(self, nums: List[int]) -> bool:
l = len(nums)
pos = 0
for idx in range(l):
if idx > pos or pos >= l - 1:
break
pos = max(pos, idx + nums[idx])
return pos >= l - 1
写复杂了…
class Solution:
def canJump(self, nums: List[int]) -> bool:
# 从第一个位置往后走,记为p, p == end2,跳跃行动,直到到达目的地或者跳不动,记为end1,跳不动就回返,直到这一系列起跳的位置end2,然后得出最多能比最大记录往前跳几步step
# 获得新的起跳点p = end1 + step,step == 0,表示导不了目的地,否则继续跳跃行动,直到到达目的地或者跳不动,记为end2,回返,直到上一次行动的结束位置end1
# 重复上述过程必然可以获得最终结果
target = len(nums) - 1
p = end2 = 0
while p < target:
if nums[p]:
p += nums[p]
else:
end1 = p
step = 0
while p > end2:
step = max(step, p + nums[p] - end1)
p -= 1
if step == 0:
return False
else:
p = end1 + step
end1, end2 = end2, end1
return True
动态规划
看了一眼评论区,有人指出贪心实质上是动态规划,动态规划的思路如下,dp[n]为0~n位置能跳到的最远距离,所以状态转移方程为dp[n] = max(dp[n-1], dp[n-1] + nums[n]),初始值可以设置dp[0] = nums[0],一维动态规划,同时根据状态转移方程可知只涉及n和n-1,可以进行滚动优化,使用一个变量即可替代整个dp数组,由此可得解法。实质上滚动优化后动态规划思路的代码和贪心思路的代码是一致的。
果然动态规划最难的是找状态。
2024.10.01写的动态规划,没过,然后搜到了这篇文章…这次的dp不如上面的思路
class Solution:
def canJump(self, nums: List[int]) -> bool:
# dp[i] 表示能否从最开始跳到 i
# dp[i] = dp[i- nums[j]] | dp[i- (nums[j] - 1)] | ... | dp[i]
dp = [False] * len(nums)
dp[0] = True
for i in range(1, len(nums)):
for j in range(0, i):
if dp[j]:
dp[i] |= j + nums[j] >= i
return dp[-1]