题意
有n根柱子可以放球,球上的权值从1向后标。要求这n根柱子满足
- 任意一根柱子上相邻两个球的和是一个完全平方数
- 小的球在下面,大的球在上面
输出最多放多少个球,和其中的一种方案。
分析
[第一想法是打表,是不是没救了]
然后首先就是考虑到了二分...然而范围十分神奇...可以说是猜出来的。
然后就是考虑把一些球连在一起,然后就变成了之前的最小路径覆盖,然后二分也很高效,完全没有问题。
然后输出的时候也就是一行输出来
[完全没看题解的完成了这道题呢x]
code
#include<bits/stdc++.h>
#define inf 100000000
#define M 4005
using namespace std;
void read(int &x){
x=0; char c=getchar();
for (;c<48;c=getchar());
for (;c>47;c=getchar())x=(x<<1)+(x<<3)+(c^48);
}
struct ed{
int x,cap,nx;
}e[M*M];
int nx[M],ecnt;
void add(int x,int y,int cap){
e[ecnt]=(ed){y,cap,nx[x]};
nx[x]=ecnt++;
e[ecnt]=(ed){x,0,nx[y]};
nx[y]=ecnt++;
}
bool mark[M];
int to[M],m;
struct Dinic{
int level[M],Q[M],nnx[M],s,t;
bool bfs(int x){
memset(level,0,sizeof(level));
int l=0,r=0;
level[Q[r++]=x]=1;
for (;l<r;){
x=Q[l++];
for (int i=nx[x];~i;i=e[i].nx)if (e[i].cap>0&&!level[e[i].x]){
level[Q[r++]=e[i].x]=level[x]+1;
if (e[i].x==t)return 1;
}
}
return level[t]>0;
}
int dfs(int x,int f){
if (x==t)return f;
int sum=0,d;
for (int &i=nnx[x];~i;i=e[i].nx)if (e[i].cap>0&&level[x]+1==level[e[i].x]){
d=dfs(e[i].x,min(f-sum,e[i].cap));
if (d){
to[x]=e[i].x;
if (e[i].x>m)mark[e[i].x-m]=1;
}
e[i].cap-=d;
e[i^1].cap+=d;
sum+=d;
if (sum==f)return f;
}
if (!sum)level[x]=0;
return sum;
}
int solve(int S,int T){
s=S; t=T;
int sum=0;
for (;bfs(s);){
memcpy(nnx,nx,sizeof(nx));
sum+=dfs(s,inf);
}
return sum;
}
}dinic;
bool CHK(int a){
int b=int(sqrt(a));
return b*b==a;
}
int n;
bool chk(){
memset(nx,-1,sizeof(nx)); ecnt=0;
int i,j;
for (i=1;i<=m;i++)add(0,i,1),add(i+m,2*m+1,1);
for (i=1;i<=m;i++){
for (j=i+1;j<=m;j++){
if (CHK(i+j)){
add(i,m+j,1);
}
}
}
int res=m-dinic.solve(0,2*m+1);
return res<=n;
}
void pt(){
memset(nx,-1,sizeof(nx)); ecnt=0;
int i,j;
for (i=1;i<=m;i++)add(0,i,1),add(i+m,2*m+1,1);
for (i=1;i<=m;i++){
for (j=i+1;j<=m;j++){
if (CHK(i+j)){
add(i,m+j,1);
}
}
}
memset(to,0,sizeof(to));
memset(mark,0,sizeof(mark));
dinic.solve(0,2*m+1);
for (i=1;i<=m;i++)if (!mark[i]){
printf("%d",i);
for (j=i;to[j];){
j=to[j]-m;
printf(" %d",j);
}
printf("\n");
}
}
int main(){
scanf("%d",&n);
int res=0,l=0,r=2000;
for (;l<=r;){
m=(l+r)>>1;
if (chk()){
res=m;
l=m+1;
}
else r=m-1;
}
printf("%d\n",res);
m=res;
pt();
return 0;
}