oj:深搜+回溯(2)

本文介绍了一个利用深度优先搜索(DFS)结合回溯法解决全排列问题的程序实现。通过输入不同类型的元素及其数量,程序能够判断是否能构成一个n×n的方阵,每个位置上的元素互不相同且符合相邻元素的约束条件。文章提供了一个完整的C++代码示例。
摘要由CSDN通过智能技术生成

参考《算法设计与分析》P276

#include <iostream>
#include <string>
using namespace std;

int map[25][4];
int n;
int q;
int icount[25];
int itable[25];

int place(int pos)
{
    if (pos == n*n)return 1; //递归出口
    for (int i = 0; i < q; i++) //在pos位置上,从候选类型中选择一个放在此位置
    {
        if (icount[i] == 0)continue; //如果类型为i的没有,则继续for循环
        if (pos%n != 0)
            if (map[itable[pos - 1]][1] != map[i][3])continue;
        if (pos >= n)
            if (map[itable[pos - n]][2] != map[i][0])continue;
        itable[pos] = i;
        icount[i]--;
        if (place(pos + 1) == 1)return 1;
        icount[i]++;
    }
    return 0;
}
int main()
{
    while (cin >> n && n)
    {
        int top, right, down, left;
        /*
            初始化全局变量
        */
        q = 0;
        memset(map, 0, sizeof(map)); 
        memset(icount, 0, sizeof(icount));
        memset(itable, 0, sizeof(itable));
        /*
            输入值,重复类型不存入map中
        */
        for (int i = 0; i < n*n; i++)
        {
            cin >> top >> right >> down >> left;
            int j;
            for ( j = 0; j < q; j++)
            {
                if (map[j][0] == top && map[j][1] == right && map[j][2] == down && map[j][3] == left)
                {
                    icount[j]++;
                    break;
                }
            }
            if (j == q)
            {
                map[j][0] = top;
                map[j][1] = right;
                map[j][2] = down;
                map[j][3] = left;
                icount[j]++;
                q++;
            }               
        }
        /*
            开始深搜+回溯
        */
        if (place(0)) cout << "possible" << endl;
        else cout << "impossible" << endl;

    }
    system("pause");
    return 0;
}

此题也可以理解为:一个全排列+剪枝(条件处理)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值