一道比较有意思的背包题目

这篇博客介绍了如何利用结构体排序和二分查找策略来解决01背包问题。作者首先展示了通过创建一个包含体积和价值的结构体,并对物品按体积排序的解法。接着,作者探讨了二分答案的思想,解释了为什么这种方法适用于该问题,并给出了具体的实现。这两种方法都在避免暴力枚举的同时提高了效率。
摘要由CSDN通过智能技术生成

https://www.luogu.com.cn/problem/P2370

废话不多说,上题

 目前get了两种思路,一种是运用结构体排序,另一种是运用的二分答案,真的会被这个想法给惊艳后面细说.​​​​​​

1.结构题排序

首先创造一个class去存物品的体积和价值,之后根据物品的体积进行排序.后面就是正常的01背包模板.

此时的v[i]是有顺序的,即当第一个dp[j]满足条件时,即是我们所求的最小的接口大小.

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
class note{
public:
    int v,w;
}a[1005];
ll dp[1005];
bool cmp(note a,note b)
{
    return a.w<b.w;
}
int main()
{
    ll n,p,s;
    cin>>n>>p>>s;
    int i;
    for(i=1;i<=n;i++){
        cin>>a[i].w>>a[i].v;
    }
    sort(a+1,a+n+1,cmp);
    int j;
    for(i=1;i<=n;i++){
        for(j=s;j>=a[i].w;j--){
            dp[j]=max(dp[j],dp[j-a[i].w]+a[i].v);
            if(dp[s]>=p){
                cout<<a[i].w<<endl;
                //system("pause");
                return 0;
            }
        }
    }
    cout<<"No Solution!"<<endl;
    //system("pause");
    return 0;
}

 2.二分答案

之前接触了一点二分,但仅仅对其停留在寻找一个符合要求的数,认为其为解题优化的辅助,但今天见识到其可以用于解题.

二分答案,算法基础源于二分,这里不做过多的解释.

 这里为什么能用二分答案?

原理:

  1. 题目难以用直接数学方法解出;
  2. 题目用逐步验证的方法相对容易解出,但暴力枚举又容易超时;
  3. 答案有明显的范围,且范围时间上允许二分答案(时间复杂度一般近似O[log_2(right-left+1)]O[log2​(right−left+1)]);
  4. 问题的答案是单调的(反复强调的重点),即当验证答案XX满足条件,则[n,right][n,right]或[left,n][left,n]也一定满足;不满足时,也可表明[left,n][left,n]或[n,right][n,right]也一定不满足。

那么,这个题目,对什么进行二分?对体积,定义最小的体积为low,最大的体积为high,去检查mid是否合理.

#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
typedef long long ll;
ll w[1005];
ll v[1005];
ll f[1005];
ll n,s,p;
int dp(int k){

    int i,j;
    memset(f,0,sizeof(f));//因为要多次使用dp,所以必须清空
    for(i=1;i<=n;i++){
        if(k!=-1&&w[i]>k){/*进行简单的判断*/
            continue;
        }
        for(j=s;j>=w[i];j--){
            f[j]=max(f[j],f[j-w[i]]+v[i]);
        }
    }
    return f[s];
}
bool check(int mid)
{
    return dp(mid)>=p;
}
int dic(int l,int r)
{
    int ans=-1;
    while(l<=r){
        int mid=(l+r)/2;
        if(check(mid)){
            ans=mid;
            r=mid-1;
        }
        else{
            l=mid+1;
        }
    }
    return ans;
    
}

int main()
{
    
    cin>>n>>p>>s;
    int i;
    ll low=1e7;
    ll high=0;
    for(i=1;i<=n;i++){
        cin>>w[i]>>v[i];
        high=max(high,w[i]);
        low=min(low,w[i]);
    }
    int ans=-1;
    if(dp(ans)<p){
        cout<<"No Solution!";
    }
    else{
        cout<<dic(low,high);
    }
    //system("pause");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值