https://www.luogu.com.cn/problem/P2370
废话不多说,上题
目前get了两种思路,一种是运用结构体排序,另一种是运用的二分答案,真的会被这个想法给惊艳后面细说.
1.结构题排序
首先创造一个class去存物品的体积和价值,之后根据物品的体积进行排序.后面就是正常的01背包模板.
此时的v[i]是有顺序的,即当第一个dp[j]满足条件时,即是我们所求的最小的接口大小.
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
class note{
public:
int v,w;
}a[1005];
ll dp[1005];
bool cmp(note a,note b)
{
return a.w<b.w;
}
int main()
{
ll n,p,s;
cin>>n>>p>>s;
int i;
for(i=1;i<=n;i++){
cin>>a[i].w>>a[i].v;
}
sort(a+1,a+n+1,cmp);
int j;
for(i=1;i<=n;i++){
for(j=s;j>=a[i].w;j--){
dp[j]=max(dp[j],dp[j-a[i].w]+a[i].v);
if(dp[s]>=p){
cout<<a[i].w<<endl;
//system("pause");
return 0;
}
}
}
cout<<"No Solution!"<<endl;
//system("pause");
return 0;
}
2.二分答案
之前接触了一点二分,但仅仅对其停留在寻找一个符合要求的数,认为其为解题优化的辅助,但今天见识到其可以用于解题.
二分答案,算法基础源于二分,这里不做过多的解释.
这里为什么能用二分答案?
原理:
- 题目难以用直接数学方法解出;
- 题目用逐步验证的方法相对容易解出,但暴力枚举又容易超时;
- 答案有明显的范围,且范围时间上允许二分答案(时间复杂度一般近似O[log_2(right-left+1)]O[log2(right−left+1)]);
- 问题的答案是单调的(反复强调的重点),即当验证答案XX满足条件,则[n,right][n,right]或[left,n][left,n]也一定满足;不满足时,也可表明[left,n][left,n]或[n,right][n,right]也一定不满足。
那么,这个题目,对什么进行二分?对体积,定义最小的体积为low,最大的体积为high,去检查mid是否合理.
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
typedef long long ll;
ll w[1005];
ll v[1005];
ll f[1005];
ll n,s,p;
int dp(int k){
int i,j;
memset(f,0,sizeof(f));//因为要多次使用dp,所以必须清空
for(i=1;i<=n;i++){
if(k!=-1&&w[i]>k){/*进行简单的判断*/
continue;
}
for(j=s;j>=w[i];j--){
f[j]=max(f[j],f[j-w[i]]+v[i]);
}
}
return f[s];
}
bool check(int mid)
{
return dp(mid)>=p;
}
int dic(int l,int r)
{
int ans=-1;
while(l<=r){
int mid=(l+r)/2;
if(check(mid)){
ans=mid;
r=mid-1;
}
else{
l=mid+1;
}
}
return ans;
}
int main()
{
cin>>n>>p>>s;
int i;
ll low=1e7;
ll high=0;
for(i=1;i<=n;i++){
cin>>w[i]>>v[i];
high=max(high,w[i]);
low=min(low,w[i]);
}
int ans=-1;
if(dp(ans)<p){
cout<<"No Solution!";
}
else{
cout<<dic(low,high);
}
//system("pause");
return 0;
}