有一个人前来买瓜 | C++ | 二维背包问题

        提醒:这道题目你会不会做,看不看得懂其他大佬的做法,完全取决于你看没看过背包问题,懂不懂背包问题的基本逻辑原理。换言之,只要你会背包,自己做出来不是难题。

(因为我身边好多人包括我,一开始都不清楚背包问题而莽做,结果碰壁,故作此提醒)


一、题目描述

水果摊一共有n个瓜,每个瓜有重量w,成熟度v,金粒子数量g。一共有q次询问,每次询问给出两个值W、V,小军要选取n个瓜的子集,使总重量 Σw≤W,总成熟度Σv≥V,求 ΣgΣg的最大值。

Input

第一行输入两个整数n,q(1≤n≤100,1≤q≤100)n,q(1≤n≤100,1≤q≤100),代表瓜的数量和询问数量。

接下来n行,每行三个整数,第i行的三个整数为wi,vi,gi(1≤wi,vi,gi≤100),分别代表第i个瓜的重量,成熟度和价值。

接下来q行,输入两个整数W,V(1≤W,V≤500)W,V(1≤W,V≤500),代表一组询问。

Output

输出一共有q行,每行一个整数,分别代表每组询问的最大金粒子数总和,若无合法的买法则输出-1。

测试输入期待的输出时间限制内存限制额外进程
测试用例 1以文本方式显示
  1. 5 1↵
  2. 2 4 5↵
  3. 4 3 3↵
  4. 1 3 2↵
  5. 3 4 3↵
  6. 3 2 5↵
  7. 10 10↵
以文本方式显示
  1. 15↵
1秒64M0

二、二维背包问题

        在我看来,背包问题就是递推的某种变形。递推是按照一定的规律来计算序列中的每个项,通常是通过计算前面的一些项来得出序列中的指定项的值;背包问题中基于其不同的物体取法有着不同的称重和价值情况,这个类似递推的过程,叫做转移

        具体过程去课本上或者网络上一搜便是,也不难,不多赘述。

        用动态规划解决背包问题,关键就是其初始状态和转移方程,有时候取值范围也很重要,比如这题。


三、我的做法

定义二维数组dp[ j ][ k ],表示当重量为 j ,成熟度为 k 时的价值数。

w[i],v[i],g[i]分别是第 i 个瓜的重量、成熟度和价值。

买0个瓜的情况,重量为0,成熟度为0,价值为0,故dp[0][0]=0。

接下来有三层循环,第一层循环是i从1到n,表示我有n个瓜,每个瓜循环一次。

第二层循环是重量,第三层循环是成熟度。

        具体的循环过程是这样的,对每一个瓜,我扫描所有的重量和成熟度的组合,如果dp[ j ][ k ]有价值,我就可以考虑进行转移,转移情况有两种,即买这个瓜和不买这个瓜,因此转移方程为dp[ j+w[i] ] [ k+v[i] ] = max( dp[j][k]+g[i] , dp[ j+w[i] ] [ k+v[i] ])。

        等我们依据现有的瓜建立好其对应的dp数组之后,再读入每次询问的W和V,然后在合适的范围内(0~W,V~500)寻找最大的价值就行了。


四、完整代码

#include<bits/stdc++.h> 
using namespace std;
typedef long long ll;
const int N = 110;
int n,q; //瓜的数量和询问次数
int w[N],v[N],g[N]; //瓜的重量、成熟度、价值
int W,V; //总重量,总成熟度 
ll dp[501][501]; //f[j][k]重量为j,成熟度为k的价值 

int main(){
	
	scanf("%d %d",&n,&q);
	memset(dp,-1,sizeof(dp));
	dp[0][0] = 0;
	
	for (int i=1;i<=n;i++) {
		scanf("%d %d %d",&w[i],&v[i],&g[i]);	
	}
	
	for (int i=1;i<=n;i++) {
		
		for (int j=500;j>=0;j--) {
			for (int k=500;k>=0;k--) {
				if ( dp[j][k]>=0 ) {
					if (j+w[i]<=500) {
						dp[j+w[i]][min(k+v[i],500)] = max(dp[j][k]+g[i],dp[j+w[i]][min(k+v[i],500)]);
					}
				}
			}
		}
		
	} 
	
	
	for (int i=0;i<q;i++) {
		scanf("%d %d",&W,&V);
		ll mxn = -1;
		for (int j=0;j<=W;j++) {
			for (int k=V;k<=500;k++) {
				mxn = max( mxn,dp[j][k]);
			}
		}
		cout << mxn << endl;
	} 
	 
	return 0;
}

总的来说不难,作为一个经典的背包问题来做确实是很有训练价值。


五、常见问题汇总

1、盲目开三位数组会爆内存。

2、虽然题目说V不超过500,但不代表瓜的成熟度真不会超过500,甚至我们连它的上限都不知道。因此不建议盲目开第二阶空间,而是将成熟度超过500的都存入500;见26行min(k+v[i],500)。

3、重量超过500的,直接抛弃。

4、题目数据以百为单位,就这个简单的三层循环不用担心TLE,但是加第四层就不一定了。

5、记得memset为负值,-INF或者-1都行,因为我们在判断dp>0时会用到,防止误判。

6、从大到小循环并且用加法,或者从小到大循环并且用减法,不然也会误判。

7、也有人提醒说要开long long。

结束辣,wuhu!

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我来给您讲解一下如何用 C++ 实现动态规划算法解决背包问题背包问题是一类经典的组合优化问题,它有多种不同的形式,其中比较常见的是 0/1 背包问题。在 0/1 背包问题中,有一个固定大小的背包,同时有一些物品,每个物品有一个重量和一个价值,在不超过背包容量的前提下,我们希望选择一些物品放入背包中,使得它们的总价值最大。 下面是一个 0/1 背包问题的动态规划算法实现示例: ```cpp #include <iostream> #include <vector> using namespace std; // 求解 0/1 背包问题的最大价值 int knapsack(vector<int>& w, vector<int>& v, int c) { int n = w.size(); vector<vector<int>> dp(n+1, vector<int>(c+1, 0)); for (int i = 1; i <= n; i++) { for (int j = 1; j <= c; j++) { if (j < w[i-1]) { dp[i][j] = dp[i-1][j]; } else { dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1]); } } } return dp[n][c]; } int main() { vector<int> w = {2, 3, 4, 5}; vector<int> v = {3, 4, 5, 6}; int c = 8; cout << "0/1 背包问题的最大价值为:" << knapsack(w, v, c) << endl; return 0; } ``` 在上面的示例中,我们使用了一个二维数组 dp[i][j] 来表示在前 i 个物品中,背包容量为 j 时可以获得的最大价值。我们先将 dp[0][j] 和 dp[i][0] 初始化为 0,然后通过一个双重循环求解 dp[i][j] 的值,最后返回 dp[n][c] 即可。 具体地,对于第 i 个物品,如果它的重量 w[i-1] 大于背包容量 j,则不放入该物品,此时 dp[i][j] = dp[i-1][j];如果它的重量小于等于背包容量,则可以考虑将其放入背包中,此时 dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1]),其中 dp[i-1][j] 表示不放入该物品的最大价值,dp[i-1][j-w[i-1]] + v[i-1] 表示放入该物品的最大价值。 这就是一个简单的动态规划算法的实现。同样地,实际应用中可能需要更加复杂的算法实现,但基本思路是相同的,即通过动态规划求解子问题的最优解,从而求解原问题的最优解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值