一、概述
(一)相关关系
(1)函数关系:(如:销售额与销售量;圆面积和圆半径)
是事物间的一种一一对应的确定性关系.即:当一个变量x取一定值时,另一变量y可以依确定的关系取一个确定的值。
(2)统计关系(如:收入和消费;身高和遗传)
事物间的关系不是确定性的.即:当一个变量x取一定值时,另一变量y的取值可能有几个.一个变量的值不能由另一个变量唯一确定。
统计关系的常见类型:线性相关(正/负);非线性相关
统计关系不像函数关系那样直接,但是却普遍存在,有强有弱,那么应该如何测度呢?
(二)相关分析和回归分析的任务
研究对象:统计关系
相关分析旨在测度变量间线性关系的强弱程度
回归分析侧重考察变量之间的数量变化规律,并且通过一定的数学表达式来描述这种关系,进而确定一个或者几个变量的变化对另一个变量的影响程度
二、相关分析
目的:通过样本数据,研究两变量之间的线性相关程度的强弱。(eg.职工的年龄和收入的之间的关系、工人数量和管理人员数量之间关系)
基本方法:绘制散点图、计算相关系数
(一)绘制散点图
(一)散点图
将数据以点的形式绘制在直角平面上,比较直观,可以用来发现变量间的关系和可能的趋势。
例如上图体现了正相关的趋势
(二)基本操作步骤
(1)菜单选项:graphs->scatter
(2)选择散点图类型:
nsimple:简单散点图(显示一对变量的散点图)
noverlay:重叠散点图(显示多对变量的散点图)
(3)选择x轴和y轴的变量
(4)选择分组变量(set markers by):分别以不同颜色点的表示