自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(199)
  • 收藏
  • 关注

原创 怎么通过SPSS的神经网络模型预测结果

神经网络模型是数据分析常用的模型,它广泛应用于众多领域,比如:医疗、人工智能、深度学习、语音、机器人等。它能通过现有数据经过神经网络模型训练得到训练模型,再将模型运用于预测数据集,进而得到预测结果,并且将预测趋势应用于各个领域。IBM SPSS Statistics同样具备神经网络模型,直接将需要分析数据导入IBM SPSS Statistics,然后进行简单配置即可使用神经网络模型。接下来就来看下如何使用SPSS神经网络模型预测结果。数据集准备打开SPSS软件,如果预测的数据集是事先准备好的,则直接

2021-12-28 16:47:26 12051 1

原创 通过SPSS使用命令语法实现快速删除变量的步骤

当我们面对一个庞大的数据集的时候,我们想要对该数据集进行一些操作,可能会觉得比较繁琐。为了快速精准的实现数据过滤操作, SPSS是自带了语法功能,通过语法即可快速实现复杂操作。今天小编将通过快速删除变量的操作,让你感受到SPSS语法功能的强大。快速删除变量打开SPSS软件,并且新建一个数据集。这里为了演示快速删除变量小技巧,在数据集中添加了五个变量,并且增加了部分数据,具体数据集如下图所示。图1新建数据集点击SPSS软件顶部菜单栏“编辑”-“选项”,即可打开选项窗口,再点击选项窗口顶.

2021-12-23 13:14:57 735 1

原创 SPSS卡方检验结果解读详解

卡方检验(Chi-Square Test)是由Pearson提出的一种统计方法,在一定的置信水平和自由度下,通过比较卡方统计量和卡方分布函数概率值,判断实际概率与期望概率是否吻合,通过比较理论概率和实际概率的吻合程度,可检验两个分类变量的相关性。用户可利用SPSS软件方便的完成卡方检验,在SPSS软件中,默认H0成立,即观察频数和实际频数无差别,即两组变量相互不产生影响,两组变量不相关,如果检验P值很高,则假设检验通过;如果检验P值很低,则检验不通过,观察频数和实际频数有差别,两组变量相关。SPSS数据检验

2021-12-21 16:09:39 46822

原创 如何使用SPSS进行相关性分析

相关性分析旨在分析两组数据之间是否相互影响,彼此是否独立的变动。SPSS内部提供了多种分析数据相关性的方法:卡方检验(Chi-SquareTest),Pearson相关系数计算,Spearman相关系数计算和Kendall的tau-b(K)相关系数计算。这四种分析方法适用于不同的数据类型,下面向大家介绍常用的SPSS相关性分析方法。 1.卡方检验(Chi-SquareTest) 卡方检验(Chi-SquareTest)是由Pearson提出的一种统计方法,在一定的置信水平和自由度下,通过比较...

2021-12-17 15:41:45 40414

原创 使用SPSS进行一致性分析的相关步骤

一致性分析是指2位及以上观察者对同一研究对象进行评估的一致性。简单来说就是分析的问题是同一个方面,或者说是同一个维度。比如,本教程通过SPSS软件对课堂感受进行一致性分析,将课堂感受数据中的交互性、充分性、课堂融入度、实体课程等效程度进行一致性分析。通过SPSS一致性分析得到的数据可以进行判断这四个变量是否满足一致性。 一、数据准备 本例通过SPSS软件新建“课堂感受”数据,点击左上角“文件”-“数据”,即可新建数据文件,数据变量主要包括来自IP、交互性、充分性、课堂融入度、实体课程等效程度...

2021-12-16 15:06:26 6842

原创 如何使用SPSS进行计算变量的操作

当我们在进行数据分析时,除了对比现有的数据信息外,还能通过现有的数值计算出其他变量的参数。不过这就需要用到IBM SPSS Statistics中计算变量命令了。今天,我就以一组产品销售的数据为例,向大家演示一下SPSS计算变量的操作方法。 软件版本及系统:IBMSPSSStatistics;Windows10系统 一、导入统计数据 1、打开数据文档如图1所示,点击工具栏中的“打开数据文档”按钮。 图1:打开数据文档 2、导入实验数据 在“打开数据”的...

2021-12-15 16:59:35 15692

原创 SPSS中的命令语法如何实现快速删除变量

当我们面对一个庞大的数据集的时候,我们想要对该数据集进行一些操作,可能会觉得比较繁琐。为了快速精准的实现数据过滤操作, SPSS是自带了语法功能,通过语法即可快速实现复杂操作。今天小编将通过快速删除变量的操作,让你感受到SPSS语法功能的强大。快速删除变量打开SPSS软件,并且新建一个数据集。这里为了演示快速删除变量小技巧,在数据集中添加了五个变量,并且增加了部分数据,具体数据集如下图所示。图1新建数据集点击SPSS软件顶部菜单栏“编辑”-“选项”,即可打开选项窗口,再点击选项窗口顶.

2021-12-02 15:55:37 1567

原创 如何使用SPSS进行判别分析

今天将为大家讲解使用spss进行判别分析的相关步骤。1.Discriminant Analysis判别分析主对话框 如图 1-1 所示图 1-1 Discriminant Analysis 主对话框(1)选择分类变量及其范围在主对话框中左面的矩形框中选择表明已知的观测量所属类别的变量(一定是离散变量),按上面的一个向右的箭头按钮,使该变量名移到右面的Grouping Variable 框中。此时矩形框下面的Define Range 按钮加亮,按...

2021-11-24 19:40:26 4282

原创 如何使用SPSS进行相关性和回归分析

任何事物和人都不是以个体存在的,它们都被复杂的关系链所围绕着,具有一定的相关性,也会具备一定的因果关系,(比如:父母和子女,不仅具备相关性,而且还具备因果关系,因为有了父亲和母亲,才有了儿子或女儿),但不是所有相关联的事物都具备因果关系。 下面用SPSS采用回归—线性分析的方式来分析一下:居民总储蓄 和 “居民总消费”情况是否具备相关性,如果具备相关性,那相关关系的密切程度为多少。下面以“居民总储蓄”和“居民总消费”的调查样本做统计分析,数据如下所示:第一步:我们先来分析“居民总储蓄”...

2021-11-14 17:01:27 13720

原创 SPSS如何进行Cox回归分析操作

问题与数据某研究者拟观察某新药的抗肿瘤效果,将70名肺癌患者随机分为两组,分别采用该新药和常规药物进行治疗,观察两组肺癌患者的生存情况,共随访2年。研究以死亡为结局,两种治疗方式为主要研究因素,同时考虑调整年龄和性别的影响,比较两种疗法对肺癌患者生存的影响是否有差异。变量的赋值和部分原始数据见表1和表2。表1. 肺癌患者生存的影响因素与赋值表2. 两组患者的生存情况对数据结构的分析该研究以死亡为结局,治疗方式为主要研究因素,每个研究对象都有生存时间(随访开始到死亡、失访或随访结束

2021-11-11 19:45:03 3592

原创 如何使用SPSS进行两因素重复测量的方差分析

一、问题与数据某研究者拟评估海水淹溺后残留于肺内的海水是否可导致严重的肺损伤,建立动物模型。将12只杂种犬随机分为两组,一组海水灌注右肺,另一组海水灌注全肺,每组6只。每只犬分别于海水灌注前以及灌注后5min、30min、60min、120min检测氧分压PaO2(kPa)。(案例来自于刘桂芬《医学统计学》)试问:(1)不同灌注处理对肺部氧分压有何作用?(2)时间是否也会产生影响?(3)两者之间是否存在交互作用?表1. 海水灌注前后两组杂种犬的PaO2(kPa)测定结果二、对

2021-11-05 16:32:24 8189

原创 SPSS方差分析应该如何进行

以前,我们在学统计学的时候,做方差分析的话,常常会用到spss这款软件。后来,在工作上,很多实验数据的分析,也还是会用到 spss,用它来分析比较实验数据之间有无显著差异。对此,很多刚接触该软件的用户就问到如何用spss做方差分析。所以,本文来讲解用spss做方差分析的方法步骤,帮助大家分析结果的数据差异,从而提高实验的有效性。用spss做方差分析教程1. 首先,我们打开 spss 软件,在软件的左下方点击切换到“变量视图”的操作界面。2. 因为要用 spss 做方差分析,故此...

2021-11-05 15:25:20 4877

原创 SPSS教程——进行卡方检验的相关步骤

作为非参数检验之一的卡方检验用于判断样本是否来自特定分布的总体的检验方法,主要用于研究总体分布和理论分布是否存在显著差异。适用于有多个分类值的总体分布的分析。在这次教程中,我们给大家演示SPSS如何进行卡方检验。下面我们使用IBM SPSS Statistics 26(win10)结合具体案例详细演示一遍吧。打开样本数据医学家研究发现,在一周中,周一心脏病患者猝死的人数较多,其他时间相同。周一到周日的比例近似为2.8:1:1:1:1:1:1。为此在网上搜集了一份心脏病人死亡日期的样本数据,用于推断

2021-10-27 13:54:08 44955 1

原创 SPSS教程——游程检验使用方法,如何验证数据的随机性

变量值随机性检验、卡方检验和二项分布检验在IBM SPSS Statistics中都属于非参数检验。变量值随机性检验主要是检验数据是否具有随机性,游程检验就是所涉及的具体方法。所谓游程就是对于整个样本序列中连续出现相同变量值的次数。游程数过大过小都说明变量值存在不随机的现象。在这次教程中,我们给大家演示SPSS如何使用游程检验,验证数据的随机性的教程。打开数据这里我们提前准备了一份电缆数据,它在各个时间点上记录了设备耐压数据,检测耐压数据的变量是否具有随机性。可以看到该数据案例只有一个数值变量。

2021-10-27 13:43:29 4236

原创 如何使用SPSS判断数据的正态分布

当我们应用统计方法对数据进行分析时,会发现许多计量资料的分析方法,例如常用的T检验、方差分析、相关分析以及线性回归等等,都要求数据服从正态分布或者近似正态分布,但这一前提条件往往被使用者所忽略。因此为了保证数据满足上述统计方法的应用条件,对原始数据进行正态性检验是十分必要的,这一节内容我们主要向大家介绍如何对数据资料进行正态性检验。一、正态性检验:偏度和峰度1、偏度(Skewness):描述数据分布不对称的方向及其程度(见图1)。当偏度≈0时,可认为分布是对称的,服从正态分布;当偏度&g

2021-10-11 19:40:12 21853 1

原创 SPSS的主要窗口简介

1 数据编辑窗口启动SPSS Statistics 19.0 后,系统会自动打开数据编辑 窗口(Data Editor)。 可以选择菜单栏中的【File(文件)】 →【New(新建)】 → 【Data(数据)】命令,新建一个SPSS的数据文件,如下图所示;或者选择菜单栏中的【File (文件)】 →【Open(打开)】 →【Data(数据)】命令打开一个保存的数据文件。2 结果输出窗口SPSS的Output(输出)窗口 SPSS Viewer,一般随执行统计分析命令而打开,用于显示统计分析结

2021-10-09 17:10:07 5246

原创 SPSS的K均值聚类、分层聚类、二阶聚类有什么区别

K均值聚类、分层聚类、二阶聚类是SPSS聚类分析中常用的三种聚类方法。K均值聚类使用的是欧式距离的测量方法;分层聚类是根据度量的距离远近,构建谱系分析;二阶聚类是利用距离测量得到分类树,然后再利用BIC或AIC准则判别最佳聚类。除了以上聚类原理的不同外,三种聚类方法还有哪些不同点呢?接下来,我们从参数设置与结果解读两方面进行详细解读。图1:二阶、K均值、系统聚类一、参数设置K均值聚类仅可用于连续变量的聚类分析,因此,如图1所示,其参数设置面板仅提供了一个变量选项。另外,K均值聚类主要是采

2021-10-08 13:24:38 3579

原创 SPSS的中分层聚类法的实际应用详解

IBM SPSS Statistics中的分层聚类法,也称作系统聚类法,是按照度量数据距离的远近,对预先设定的分类范围进行聚类的分析方法。其优点是可设定分类的范围、可处理分类变量与连续变量、可选择的数据距离计算方法多等。但需要注意的是,分层聚类法无法同时处理两种变量类型,即单次分析只能在同一种变量类型中进行。接下来,我们通过实例具体演示下操作方法。一、数据准备本文使用到的是一组包含连续变量(销售额、销售量等)与分类变量(店铺类型、星级等)的店铺数据。图1:店铺数据二、系统聚类参数设置

2021-09-22 17:12:16 2998

原创 如何在IBM SPSS Statistics中进行K均值聚类分析

IBM SPSS Statistics的K均值聚类分析,是一种采用欧式距离作为分类指标的迭代聚类分析方法。其优点是操作简单,运算速度快,但由于其聚类原理是将欧式距离相似的数据归为一个类别,因此需采用连续型的数据变量。接下来,我们通过实例来演示一下K均值聚类分析。一、数据准备本例使用的是一组店铺的销售数据,包含客流量、销售额与销售量三个连续型变量。我们会使用到以上三个连续变量对数据个案进行K均值聚类分析。图1:店铺数据二、K均值聚类参数设置K均值聚类分析是SPSS分类分析法中的一种

2021-09-18 15:56:54 3388

原创 SPSS新手教程—两步聚类之结果解读

在《详解SPSS两步聚类之参数设置》一文中,我们已经了解了两步聚类的优点、分析原理,以及参数设置的技巧。在本节中,会对IBM SPSS Statistics聚类后的结果进行解读,其中会涉及到最终聚类的结果、聚类的质量、变量重要性、聚类特征的解读。如图1所示,我们先来回顾下本例数据在参数设置面板中的详细设置。图1:二阶聚类设置一、数值结果根据上述参数设置,得到如下的数值分析结果。首先看到自动聚类结果,如图2所示为聚类的透视表结果,展示了不同聚类数目下的BIC、BIC变化量、BIC变

2021-09-15 16:54:04 17148

原创 SPSS新手教程—两步聚类之参数设置

SPSS的快速聚类(K均值聚类)仅可进行连续型变量的聚类;而系统聚类,虽然可进行连续型与分类型变量的聚类,但同一时间只能进行同一种变量类型的聚类分析。那么,有没有一种聚类方法可同时分析以上两种变量?答案是肯定的,IBM SPSS Statistics的两步聚类,也称为二阶聚类,就可以同时进行以上两种变量的聚类分析。不仅如此,两步聚类还能分析各种变量的聚类重要性。接下来,我们通过实例来详细了解下吧。一、数据准备本例使用的是一组包含客流量、销售额、销售量三个连续型变量,以及店铺类型、星级、所处区域三

2021-09-14 16:26:42 1154

原创 SPSS新手教程——对问卷数据进行处理之样本分布

在刚刚开始着手于一项研究时,利用问卷调查收集数据无疑是大多数人的选择,而如何处理收集到的数据有很多种方法,其中利用IBM SPSS Statistics软件来进行处理是比较方便且实用的,IBM SPSS Statistics软件的界面属于用户友好型,操作起来也较为简易。本次我们主要探讨如何对收集到的数据进行样本分布研究,以及如何建立样本分布表。一、打开数据文件本例中使用的是关于社交媒体使用情况对大学生自我评价影响的研究问卷所收集到的数据。首先对数据进行整理,将问卷中的问题放在列中,并根据问题对其

2021-09-13 18:07:06 4638

原创 SPSS数据重构中的个案重组变量如何进行?

对数据进行重构操作经常运用于数据分析。而IBM SPSS Statistics就为我们提供了数据重构的功能,本文重点介绍,如何选定个案重组为变量形式的数据重构,用于减少数据冗余,或分析线性模型中的单变量成分以及方差成分。在这次教程中,我们给大家演示IBM SPSS Statistics如何进行数据重构之个案重组变量的教程。下面我们使用IBM SPSS Statistics 28(win10)详细演示一遍吧。打开数据教程开始之前,我们提前准备了一份用于演示将选定个案重组为变量的数据文件,该数据记录了

2021-09-10 16:39:15 995 1

原创 SPSS入门教程——如何分析两个变量之间的关联度?

现实中我们常常会遇到对两个分类变量之间是否存在关联进行讨论,如睡眠时间与学习成绩之间是否存在关联、宣传费用与销售量是否存在关联?对于这种问题,我们是不能通过表面数据进行确定的。但我们可以通过IBM SPSS Statistics(win)中的交叉表功能来确定两个变量之间的关联是否存在。一、录入数据消费者的年龄与消费者的购买意愿是否存在关联?相信这是一个多数人都会感兴趣的问题。本文将以一组年龄与购买意愿的数据为例,展示运用IBM SPSS Statistics进行关联性分析的过程与步骤。图

2021-09-09 10:08:33 13138

原创 SPSS新手教程——进行距离分析的方法

我们在使用IBM SPSS Statistics来进行数据分析的时候,难免会遇上这种情况:变量非常多,多到我们不能对其一一控制的地步,但每个变量都有分析的价值,同时又彼此重叠。这个时候最直接的方法就是把所有变量按照一定的标准来进行分类,今天要介绍的距离分析,便可以提供这一标准。距离,意思是对变量之间的相似度或非相似度的一种测量方式。距离分析可以分为相似度测量与非相似度测量两大类,相似度测量主要分析变量的相似程度,而不相似度测量则相反,测量变量的不相似程度。今天要给大家示范的是,以我国各省农产品种植面

2021-09-06 15:35:09 3967

原创 如何使用SPSS确定建立的回归模型能用于预测分析?

当需要研究一组随机变量与另一组变量的关系时,通常会运用回归分析。通过回归分析构建数学模型,探究两种或两种以上变量之间是否存在关系,若存在关系还可进一步预测未来的数据。当自变量有多个而因变量只有一个时,则可构建spss多元线性回归分析,此时计算量较大,因此通过IBM SPSS Statistics(win)能更为准确、便捷地进行分析。一、使用的数据本文将使用一组人均消费支出额、人均工资性收入和人均非工资性收入的数据为例,使用IBM SPSS Statistics进行多元线性回归分析,分析这一组数据

2021-09-03 17:39:34 11933 1

原创 SPSS新手教程——如何生成符合特定标准差的随机数

随机数,是软件根据条件生成的一系列随机分布的数值。在一些抽奖、分配序号等对随机性要求较高的实践中,经常会运用生成随机数的方法。那么,在使用IBM SPSS Statistics软件时,怎么才能生成随机数呢?IBM SPSS Statistics可应用数学表达式的方式,生成符合特定条件的随机数。IBM SPSS Statistics的随机数函数类型很多,本文将以生成特定标准差的随机数为例,演示一下具体的操作。一、数据准备在运用IBM SPSS Statistics生成随机数前,我们需先在数据集中激

2021-09-02 11:06:31 7142 1

原创 SPSS入门教程——合并文件添加变量匹配数据的方法

在运用IBM SPSS Statistics处理数据时,我们可能需要找出一些特定的个案,以观察其数据是否存在异常。当个案数比较少时,只需简单的查找即可完成任务,但当个案数比较多时,逐个查找就会显得十分繁琐。实际上,通过使用IBM SPSS Statistics的添加变量功能,就可根据个案的唯一编号,轻松匹配出特定个案的数据,实现批量查找个案的功能。接下来,一起来看看怎么实现吧。一、指定编号的数据匹配补全如图1所示,我们需要将以下编码对应的数据匹配到数据集中。图1:需要匹配的编码由

2021-08-31 15:54:52 9747 1

原创 使用IBM SPSS Statistics检验变量间是否存在共线性

共线性,指的是线性回归方程中自变量之间存在着高度相关关系而使得方程的预测结果出现偏差。当模型存在严重共线性时,OLS估计量虽仍可能出现较好的统计显著性,但实际上其预测结果已经失去统计意义。这是因为,自变量的共线性会使参数估计值的方差增大,而变大的方差会增大随机误差项,使预测失去意义。那么,怎么在IBM SPSS Statistics中检验变量间是否存在共线性?接下来,一起通过实例详细学习一下吧。一、数据准备本例使用的是一组包含客流量、销售额与销售量的数据。图1:销售数据二、线性回

2021-08-30 14:13:26 5803

原创 SPSS入门教程——方差齐性检验的方法有哪些

SPSS方差齐性检验,即检验样本数据的方差是否相同的一种方法。什么情况下需要进行方差齐性检验?在经典的线性回归模型中,方差齐性是进行回归的前提要素之一,因OLS(最小二乘法)回归式要求模型中的随机误差项在解释变量时具有相同的方差。本文将介绍SPSS的两种检验方差齐性的方法,分别是探索分析中的Levene(莱文)检验与单因素ANOVA分析中的方差齐性检验。一、数据准备本文使用的是一组包含销售额、客流量、销售量的店铺销售数据。图1:销售数据二、探索分析首先看到的是探索分析中的Leve

2021-08-26 14:38:13 43058 2

原创 在SPSS中使用广义估算方程对非独立相关数据进行分析的方法

在各行业的统计工作中,经常会在不同的维度上对因变量和自变量的关系进行研究分析。比如我们要统计上海和北京在不同的时间维度上(上午、下午、晚上)的车流量,这种研究,它们之间的数据是非独立的,彼此之间具有一定的关系。针对这种数据的研究,我们就不可采用普通的线性回归、逻辑回归,而需要使用广义估算方程来进行其他模型的拟合计算,下面使用SPSS软件来为大家演示如何针对此情况进行统计分析。一、流程步骤本文中演示的数据如图1,第一列表示街道ID;第二列表示车流量;第三列表示是否堵塞(1表示堵塞,0表示不堵塞).

2021-08-25 17:17:19 387 1

原创 SPSS中的直方图与条形图的区别在哪里?

IBM SPSS Statistics的直方图与条形图在数据呈现上很相似,都是运用条状图形展示数据。但除了外形相似外,实际上,直方图与条形图无论是在数据类型、计算方法,还是在变量数量上都有一定的区别。接下来,我们将通过一些例子来对比学习这两种图表形式。在本例中,将会使用到的是SPSS旧对话框中的条形图与直方图。图1:条形图与直方图一、数据准备本例使用到的是一组包含定性与定量变量的销售数据,包含了客流量、销售额、销售量三个定量变量,以及店铺类型、星级两个定性变量。图2:销售数据

2021-08-24 16:11:49 2740 1

原创 使用SPSS做简单条形图的相关步骤

在SPSS中简单条形图分为三种,第一种是简单条图,也叫单式条图,主要用于表现单个指标的大小;第二种是复式条图,也叫分组条图,用以表现两个或多个分组因素间的某指标大小关系;第三种是堆积面积图,也叫堆积条图、分段条图,用于表现每个直条中某个因素各水平的构成情况。上述简单条形图中的数据也分为三种,第一种是个案组的摘要:按同一变量不同取值作分组汇总,该模式对应分类变量中的每一类观测值生成一个单式条图;第二种是各个变量的摘要:按照不同变量汇总,对应每个变量生成一个直条;第三种是个案值:反映了个体观测值,对应分类轴

2021-08-23 11:38:47 11245

原创 SPSS如何处理多选题数据?

作为一款操作直观、功能强大的统计分析软件,IBM SPSS Statistics不仅广泛使用于学术研究中,更是广泛应用于市场调研行业。而在市场调研的应用中,最常涉及到的是问卷数据的处理。对于简单的单选题,IBM SPSS Statistics处理起来与其他的数据相似,但对于多选题的话,该怎么处理呢?接下来,我们以一个实际例子讲解一下。一、数据准备以图1的多选题数据为例:1.该多选题的题目为:请问您知道以下哪些啤酒品牌?2.答案选项为:百威、青岛、雪花、喜力、嘉士伯、麒麟3.采用...

2021-08-20 16:57:22 21914 3

原创 SPSS入门教程—问卷的信度量化分析

在统计学中,常用的一种数据收集方式就是问卷调查,通常一份问卷都会有数道不同的问题,但是这其中不是所有的问题都能对我们进行的统计和分析带来特定帮助,为了保证问卷调查的可靠性和一致性,我们可以对问卷调查的问题,进行信度量化分析。通过信度分析,我们可以对问卷调查的问卷设置水平,有个大概的了解,这对于统计分析结果的准确性,能带来很大的帮助,下面我们用SPSS来演示如何进行信度分析。一、信度分析操作步骤第一步,点击【分析】--【刻度】--【可靠性分析】,打开可靠性分析设置界面,如图1。图1.

2021-08-17 11:21:36 11722 1

原创 SPSS入门教程—对数据进行去重操作的相关方法

去重操作,也就是将数据的重复值进行删除操作,在数据分析中也是经常遇到,比如同一个人重复填写了同一个调查问卷且前后答案完全一致,或者提交了两次或两次以上等原因造成数据的重复。重复的数据是需要删掉的。那么我们如何使用SPSS对数据去重操作?在这次教程中,我们给大家演示IBM SPSS Statistics如何对数据进行去重操作的教程。下面我们使用IBM SPSS Statistics 28(win10)详细演示一遍吧。标识重复个案我们在教程之前提前准备了一份问卷数据,这里我们将所有变量都一致的重复

2021-08-16 16:53:41 2406

原创 SPSS入门教程——土壤主成分优劣分析

在许多数据分析案例中,往往有许多种不同变量或因素共同影响最终结果,为了探究多变量或因素对实验结果的影响,我们常常会对数据进行主成分分析,将具有一定相关关系的变量重新组合划分为几组互不相关的新变量,作为影响结果的几种主成分,即新的综合指标来分析结果。本节将会带大家学习如何使用SPSS进行主成分分析。需要注意的是,进行主成分分析要满足两个条件:变量是连续变量或有序分类变量,且变量之间存在线性相关关系。一、打开数据文件本例中我们使用的是IBM SPSS Statistics 28.0.0.0 Wi

2021-08-13 11:49:33 935

原创 使用IBM SPSS Statistics常用图表附例演示讲解

IBM SPSS Statistics的图表功能非常强大,囊括了直方图、散点图、饼图、折线图、茎叶图等常用的图表,不仅可用于数据的预先分析,而且其图表的格式美观,更可直接在展示报告中使用,减少后续作图的时间。本文将会介绍IBM SPSS Statistics中的几个实用的图表类型,分别是SPSS散点图、饼图、直方图与P-P图。一、散点图SPSS的散点图是运用直角坐标轴展示因变量随着自变量变化而变化的图表,可直观地展示自变量与因变量的数据分布特点,并预先了解其分布的趋势。以图1所示的销售额与客

2021-08-09 13:54:39 1499

原创 怎么从SPSS的分析结果中得出回归方程?

回归方程是通过分析样本数据得到的变量间的回归关系的数字表达式。回归方程拟合程度足够好的话,可运用自变量来预测因变量的数值。比如,我们经常会构建销售额与客流量间的回归方程,以预测一定客流量下的销售额。那么,在进行回归分析时,如何得出回归方程呢?一般来说,我们可以通过检验回归系数撰写回归方程,但在不清楚方程表达式的情况下,也可通过图表参考线撰写。接下来,我们通过IBM SPSS Statistics具体阐述下以上两种方法。一、数据准备首先,准备一组销售额与客流量的数据。图1:销售额数据二

2021-08-08 16:28:52 27178

原创 IBM SPSS Statistics中包含了哪些变量测量?

在IBM SPSS Statistics的变量视图中,我们可以看到,其变量测量包含了标度、名义与有序的类型。那么,测量类型代表什么含义呢?实际上,SPSS测量类型区分的是变量对应数据的类型。虽然数据的类型与SPSS的变量测量类型相似,但也有一些不同点,接下来,我们详细来探究一下吧。图1:SPSS变量类型一、数据的变量类型首先,数据对应的变量可分为两个大类,分别是定量变量与定性变量。定量变量是具有数值特征,并包含度量单位的数据类型,如销售额、身高、体重等,可分为连续变量与离散变量,。

2021-08-06 14:06:05 1528

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除