本人的博士课题是利用机器学习的一些方法来处理雷达图像(SAR,ISAR,HRRP)。前期的重心一直放在了机器学习的模型和算法上面,也有了一点点小的成果。我研究的模型是一种受限玻尔兹曼机(Restricted Boltzmann Machine, RBM).具体来说是一种无穷受限玻尔兹曼机(infinite RBM). 这中模型能够对高维数据的概率分布建模,模型中的隐藏单元(hidden units)能够学习数据中的一些结构,从而提取数据的特征。
为什么要使用RBM作为雷达图像的特征学习呢?我有这么几点考虑:
1. RBM能够表示很复杂的高维数据的分布,雷达图像的分布会随着目标的姿态发生变化,这种变化是具有一定规律的,但又取决与具体的目标,要描述这一规律是困难的。RBM可以根据数据来学习这一规律。
2.雷达数据的训练集往往比较小,而且会变化。因而我们需要小心的选取模型的复杂度来防止过拟合。而 infinite RBM 是一种非参数模型(non-parametric model),它能根据数据自动确定模型复杂度,防止过拟合发生。
3. RBM兼具通用性和灵活性的特点,我们可以利用特定领域的知识来设计特殊的模型结构,这样它就能更有效的学习特定类型的数据。
我已经完成的主要工作总结:
1. On better training the infinite restricted Boltzmann machines.点击打开链接
这篇文章提出了一种简单有效的提高 infinite RBM 训