Description
有n个城市,其中一些城市之间由铁路双向连接,而没有铁路的城市之间由公路双向连接,现在两个人从城市1分别出发,一个人乘火车(火车不能在除城市n外的任何城市停留),另一个人自驾(同样不能在除n之外的任何城市停留,已知从一个城市到另一个城市需要一单位时间,问最少需要多少时间两个人才能在n城市相遇,如果不会相遇则输出-1
Input
第一行为两个整数n和m分别表示城市数量以及铁路数量,之后m行每行两个整数a和b表示a城市和b城市之间有铁路相连
Output
如果两个人可以在n城市相遇则输出最短时间,否则输出-1
Sample Input
4 2
1 3
3 4
Sample Output
2
Solution
显然如果两个人能够相遇,那么最优方案就是一个人直接从城市1到达城市n,另一个人通过另一种交通方式到达城市n。所以只需要判断1到n之间是铁路还是公路然后用一遍floyd求最短路即可
Code
#include<stdio.h>
#define maxn 444
#define INF 0x3f3f3f3f
#define min(x,y) ((x)<(y)?(x):(y))
int n,m,x,y,map[maxn][maxn],temp[maxn][maxn];
int main()
{
while(~scanf("%d%d",&n,&m))
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
map[i][j]=INF;
while(m--)
{
scanf("%d%d",&x,&y);
map[x][y]=map[y][x]=1;
}
if(map[1][n]==INF)//1到n是公路
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if(k!=i&&k!=j&&map[i][k]!=INF&&map[k][j]!=INF)
map[i][j]=map[j][i]=min(map[i][j],map[i][k]+map[k][j]);
if(map[1][n]==INF)printf("-1\n");
else printf("%d\n",map[1][n]);
}
else//1到n是铁路
{
for(int i=1;i<=n;i++)//把所有铁路的距离设为INF,所有公路的距离设为1
for(int j=i+1;j<=n;j++)
if(map[i][j]==INF) map[i][j]=map[j][i]=1;
else map[i][j]=map[j][i]=INF;
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if(k!=i&&k!=j&&map[i][k]!=INF&&map[k][j]!=INF)
map[i][j]=map[j][i]=min(map[i][j],map[i][k]+map[k][j]);
if(map[1][n]==INF)printf("-1\n");
else printf("%d\n",map[1][n]);
}
}
return 0;
}