HDU 6067 Big Integer(生成函数+NTT)

20 篇文章 0 订阅
9 篇文章 0 订阅

Description
有1~k-1这k-1个数,要求构造一个k进制数,其中第i个数是否可以出现j次取决于g(i,j)的取值,m次操作,每次操作把g(x,y)由0变1或由1变0,问操作前的答案和每次操作后的答案之和
Input
第一行一整数T表示用例组数,每组用例首先输入三个整数k,n,m分别表示进制,一种数出现的最大次数以及操作数,之后输入一个(k-1)*(n+1)的矩阵g,g(i,j)=1表示i可以出现j次,否则不可以,最后m行每行两个整数x,y表示把g(x,y)反转
(1<=T<=5,3<=k<=10,1<=n<=14000,1<=m<=200)
Output
输出所有操作前以及每次操作后的答案之和,结果模786433
Sample Input
1
3 2 2
101
010
1 1
1 2
Sample Output
13
Solution
这里写图片描述
Code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
namespace fastIO 
{
    #define BUF_SIZE 100000
    //fread -> read
    bool IOerror=0;
    inline char nc() 
    {
        static char buf[BUF_SIZE],*p1=buf+BUF_SIZE,*pend=buf+BUF_SIZE;
        if(p1==pend) 
        {
            p1=buf;
            pend=buf+fread(buf,1,BUF_SIZE,stdin);
            if(pend==p1) 
            {
                IOerror=1;
                return -1;
            }
        }
        return *p1++;
    }
    inline bool blank(char ch) 
    {
        return ch==' '||ch=='\n'||ch=='\r'||ch=='\t';
    }
    inline void read(int &x) 
    {
        char ch;
        while(blank(ch=nc()));
        if(IOerror)return;
        for(x=ch-'0';(ch=nc())>='0'&&ch<='9';x=x*10+ch-'0');
    }
    inline void readc(char &x)
    {
        char ch;
        while(blank(ch=nc()));
        if(IOerror)return;
        x=ch;
    }
    inline void reads(char *x,int n)
    {
        char ch;
        while(blank(ch=nc()));
        if(IOerror)return;
        for(int i=0;i<n;i++,ch=nc())x[i]=ch;
        x[n]='\0';
    }
    #undef BUF_SIZE
};
using namespace fastIO;
typedef long long ll;
const int maxbit=17,maxlen=1<<maxbit,mod=786433,g=10;
int fact[maxlen],inv[mod],pre[mod];
int wn[maxlen],inv2[maxbit+1];
int mod_pow(int a,int b)
{
    int ans=1;
    while(b)
    {
        if(b&1)ans=(ll)ans*a%mod;
        a=(ll)a*a%mod;
        b>>=1;
    }
    return ans;
}
void init()
{
    wn[0]=1,wn[1]=mod_pow(g,(mod-1)>>maxbit);
    for(int i=2;i<maxlen;i++)wn[i]=(ll)wn[i-1]*wn[1]%mod;
    inv2[0]=1,inv2[1]=(mod+1)/2;
    for(int i=2;i<=maxbit;i++)inv2[i]=(ll)inv2[i-1]*inv2[1]%mod;//预处理2^i的逆元 
    fact[0]=1;
    for(int i=1;i<maxlen;i++)fact[i]=(ll)i*fact[i-1]%mod;//i!
    inv[1]=1;
    for(int i=2;i<mod;i++)inv[i]=mod-(ll)(mod/i)*inv[mod%i]%mod;//inv(i)
    pre[0]=1;
    for(int i=1;i<mod;i++)pre[i]=(ll)inv[i]*pre[i-1]%mod;//inv(i!) 
}
void ntt(int *x,int len,int sta) 
{
    for(int i=0,j=0;i<len;i++)
    {
        if(i>j)swap(x[i],x[j]);
        for(int l=len>>1;(j^=l)<l;l>>=1);
    }
    for(int i=1,d=1;d<len;i++,d<<=1)
        for(int j=0;j<len;j+=d<<1)
            for(int k=0;k<d;k++)
            {
                int t=(ll)wn[(maxlen>>i)*k]*x[j+k+d]%mod;
                x[j+d+k]=x[j+k]-t<0?x[j+k]-t+mod:x[j+k]-t;
                x[j+k]=x[j+k]+t>=mod?x[j+k]+t-mod:x[j+k]+t;
            }
    if(sta==-1)
    {
        reverse(x+1,x+len);
        int bitlen=0;
        while((1<<bitlen)<len)bitlen++;
        int val=inv2[bitlen];
        for(int i=0;i<len;i++)x[i]=(ll)x[i]*val%mod;
    }
}
int inc(int a,int b)
{
    return a+b>=mod?a+b-mod:a+b;
}
int dec(int a,int b)
{
    return a-b<0?a-b+mod:a-b;
}
int T,k,n,m,a[10][maxlen],num[maxlen],f[maxlen],mark[10][maxlen],ans[maxlen];
char s[maxlen];
int main()
{
    init();
    read(T);
    while(T--)
    {
        read(k),read(n),read(m);
        k--;
        int len=1;
        while(len<=k*n)len<<=1;
        for(int i=0;i<len;i++)num[i]=0,f[i]=1;
        for(int i=0;i<k;i++)
        {
            for(int j=0;j<len;j++)a[i][j]=0;
            reads(s,n+1);
            for(int j=0;j<=n;j++)
            {
                if(s[j]=='1')a[i][j]=pre[j],mark[i][j]=1;
                else mark[i][j]=0;
            }
            ntt(a[i],len,1);
            for(int j=0;j<len;j++)
                if(a[i][j])f[j]=(ll)f[j]*a[i][j]%mod;
                else num[j]++;
        }
        for(int i=0;i<len;i++)ans[i]=num[i]?0:f[i];
        int p=mod_pow(g,(mod-1)/len);
        while(m--)
        {
            int x,y;
            read(x),read(y);
            x--;
            int t=mod_pow(p,y),d=pre[y];
            if(mark[x][y])d=dec(0,d);
            for(int i=0;i<len;i++,d=(ll)d*t%mod)
            {
                if(a[x][i])f[i]=(ll)f[i]*inv[a[x][i]]%mod;
                else num[i]--;
                a[x][i]=inc(a[x][i],d);
                if(a[x][i])f[i]=(ll)f[i]*a[x][i]%mod;
                else num[i]++;
                if(!num[i])ans[i]=inc(ans[i],f[i]);
            }
            mark[x][y]^=1;
        }
        ntt(ans,len,-1);
        int sum=0;
        for(int i=1;i<len;i++)sum=inc(sum,(ll)ans[i]*fact[i]%mod);
        printf("%d\n",sum);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值