HDU 6149 Valley Numer II(状压DP)

40 篇文章 1 订阅

Description

众所周知,度度熊非常喜欢图。

它最近发现了图中也是可以出现 valley v a l l e y —— 山谷的,像下面这张图。

img

为了形成山谷,首先要将一个图的顶点标记为高点或者低点。标记完成后如果一个顶点三元组 <X,Y,Z> < X , Y , Z > <script type="math/tex" id="MathJax-Element-2"> </script>中, X X Y之间有边, Y Y Z之间也有边,同时 X X Z是高点, Y Y 是低点,那么它们就构成一个valley

度度熊想知道一个无向图中最多可以构成多少个 valley v a l l e y ,一个顶点最多只能出现在一个 valley v a l l e y 中。

Input

第一行为 T T ,表示输入数据组数。

每组数据的第一行包含三个整数NMK,分别表示顶点个数,边的个数,标记为高点的顶点个数。

接着的M行,每行包含两个两个整数 XiYi X i , Y i ,表示一条无向边。

最后一行包含 K K 个整数Vi,表示这些点被标记为高点,其他点则都为低点。

1T20 1 ≤ T ≤ 20

1N30 1 ≤ N ≤ 30

1MN(N1)/2 1 ≤ M ≤ N ∗ ( N − 1 ) / 2

0Kmin(N,15) 0 ≤ K ≤ m i n ( N , 15 )

1Xi,YiN,XiYi 1 ≤ X i , Y i ≤ N , X i ≠ Y i

1ViN 1 ≤ V i ≤ N

Output

对每组数据输出最多能构成的 valley v a l l e y 数目。

Sample Input

3
3 2 2
1 2
1 3
2 3
3 2 2
1 2
1 3
1 2
7 6 5
1 2
1 3
1 4
2 3
2 6
2 7
3 4 5 6 7

Sample Output

1
0
2

Solution

状压 DP D P ,用 k k 01表示 k k 个高点的使用情况,1表示该高点已经被用过了, 0 0 表示没有被用过,设前l个低点使用的高点状态为 s s 可以组成的最多valley数目,对于第 l+1 l + 1 个低点,要么不用这个低点,要么枚举第 l+1 l + 1 个低点可以配对的高点组 (x,y) ( x , y ) ,注意 s s 中第x,y位需为 0 0 ,进而有转移

dp[l+1][s+2x+2y]=max(dp[l+1][s+2x+2y],dp[l][s]+1)

max(dp[res][s],0s<2k) m a x ( d p [ r e s ] [ s ] , 0 ≤ s < 2 k ) 即为答案,其中 res r e s 为低点数量

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef pair<int,int>P;
int T,n,m,k,low[31],high[16],dp[31][(1<<15)+5];
bool a[31][31],vis[31];
vector<P>g[31];
int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&n,&m,&k);
        memset(a,0,sizeof(a));
        while(m--)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            a[x][y]=a[y][x]=1;
        }
        memset(vis,0,sizeof(vis));
        for(int i=0;i<k;i++)
            scanf("%d",&high[i]),vis[high[i]]=1;
        int res=0;
        for(int i=1;i<=n;i++)
            if(!vis[i])low[res++]=i;
        for(int l=0;l<res;l++)
        {
            g[l].clear();
            for(int i=0;i<k;i++)
                if(a[low[l]][high[i]])
                    for(int j=i+1;j<k;j++)
                        if(a[low[l]][high[j]])
                            g[l].push_back(P(i,j));
        }
        memset(dp,0,sizeof(dp));
        int K=1<<k;
        for(int l=0;l<res;l++)
            for(int s=0;s<K;s++)
            {
                dp[l+1][s]=max(dp[l+1][s],dp[l][s]);
                for(int i=0;i<g[l].size();i++)
                {
                    int x=g[l][i].first,y=g[l][i].second;
                    if((s&(1<<x))||(s&(1<<y)))continue;
                    dp[l+1][s^(1<<x)^(1<<y)]=max(dp[l+1][s^(1<<x)^(1<<y)],dp[l][s]+1);
                } 
            }
        int ans=0;
        for(int s=0;s<K;s++)ans=max(ans,dp[res][s]);
        printf("%d\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值