HDU 4625 JZPTREE(树形DP+组合数学)

190 篇文章 1 订阅
58 篇文章 1 订阅

Description

给出一棵 n n 个节点的树,边权为一,求u,vdist(u,v)k

Input

第一行一整数 T T 表示用例组数,每组用例首先输入两个整数n,k,之后 n1 n − 1 行每行两个整数表示一条树边

(1T5,1n50000,1k500) ( 1 ≤ T ≤ 5 , 1 ≤ n ≤ 50000 , 1 ≤ k ≤ 500 )

Output

输出 u,vdist(u,v)k ∑ u , v d i s t ( u , v ) k ,结果模 10007 10007

Sample Input

1
5 3
1 2
2 3
3 4
4 5

Sample Output

100
37
18
37
100

Solution

简记 du,v=dis(u,v) d u , v = d i s ( u , v ) ,首先给出恒等式 nk=i=1kAinS(k,i) n k = ∑ i = 1 k A n i ⋅ S ( k , i ) ,其中 nk n k 可以表示将 k k 个不同的小球放入n个不同的盒子的方案数,而这个方案数就等于从 n n 个盒子选i个盒子非空,然后将 k k 个不同小球放入这i个不同的盒子里的方案数,后者即为第二类斯特林数 S(k,i) S ( k , i ) ,故可以对答案进行化简

v=1ndku,v=v=1ni=1kS(k,i)i!Cidu,v=i=1kS(k,i)i!v=1nCidu,v ∑ v = 1 n d u , v k = ∑ v = 1 n ∑ i = 1 k S ( k , i ) ⋅ i ! ⋅ C d u , v i = ∑ i = 1 k S ( k , i ) ⋅ i ! ∑ v = 1 n C d u , v i

dp[u][i]=v=1nCidu,v d p [ u ] [ i ] = ∑ v = 1 n C d u , v i ,只要求出 dp[u][i] d p [ u ] [ i ] 即可 O(k) O ( k ) 得到固定 u u 点的答案

不妨以1为树根,记 t(u) t ( u ) 表示以 u u 为根节点的子树,首先可以一遍树形DP得到 f[u][i]=vt(u)Cidu,v f [ u ] [ i ] = ∑ v ∈ t ( u ) C d u , v i ,这是由于经典等式 Cmn=Cmn1+Cm1n1 C n m = C n − 1 m + C n − 1 m − 1 ,且对于 u u 的儿子节点v的子树中一点 w w du,w=dv,w+1,故 Cidu,w=Cidv,w+Ci1dv,w C d u , w i = C d v , w i + C d v , w i − 1 ,进而有

f[u][i]=Cidu,u+vson(u)(f[v][i]+f[v][i1]) f [ u ] [ i ] = C d u , u i + ∑ v ∈ s o n ( u ) ( f [ v ] [ i ] + f [ v ] [ i − 1 ] )

注意到 dp[1][i]=f[1][i] d p [ 1 ] [ i ] = f [ 1 ] [ i ] ,之后再一遍树形 DP D P ,在已知 u u 节点父亲节点的dp[fa][i]后来求 dp[u][i] d p [ u ] [ i ] ,注意到对于 u u 子树中一点v dfa,v=du,v+1 d f a , v = d u , v + 1 ,而对于 u u 子树外一点v dfa,v=du,v1 d f a , v = d u , v − 1 ,故有
dp[u][i] ======v=1nCidu,vvt(u)Cidfa,v1+vt(u)Cidfa,v+1vt(u)Cidfa,vvt(u)Ci1dfa,v1+vt(u)Cidfa,v+vt(u)Ci1dfa,vdp[fa][i]+dp[fa][i1]vt(u)Ci1dfa,v1vt(u)Ci1dfa,vdp[fa][i]+dp[fa][i1]vt(u)Ci1dfa,v1vt(u)Ci1dfa,v1vt(u)Ci2dfa,v1dp[fa][i]+dp[fa][i1]2f[u][i1]f[u][i2] d p [ u ] [ i ] = ∑ v = 1 n C d u , v i = ∑ v ∈ t ( u ) C d f a , v − 1 i + ∑ v ∉ t ( u ) C d f a , v + 1 i = ∑ v ∈ t ( u ) C d f a , v i − ∑ v ∈ t ( u ) C d f a , v − 1 i − 1 + ∑ v ∉ t ( u ) C d f a , v i + ∑ v ∉ t ( u ) C d f a , v i − 1   = d p [ f a ] [ i ] + d p [ f a ] [ i − 1 ] − ∑ v ∈ t ( u ) C d f a , v − 1 i − 1 − ∑ v ∈ t ( u ) C d f a , v i − 1 = d p [ f a ] [ i ] + d p [ f a ] [ i − 1 ] − ∑ v ∈ t ( u ) C d f a , v − 1 i − 1 − ∑ v ∈ t ( u ) C d f a , v − 1 i − 1 − ∑ v ∈ t ( u ) C d f a , v − 1 i − 2 = d p [ f a ] [ i ] + d p [ f a ] [ i − 1 ] − 2 f [ u ] [ i − 1 ] − f [ u ] [ i − 2 ]

总时间复杂度 O(Tnk) O ( T n k )

Code

#include<cstdio>
#include<vector>
using namespace std;
#define maxn 50005
#define mod 10007
int mul(int x,int y)
{
    int z=x*y;
    return z-z/mod*mod;
}
int add(int x,int y)
{
    x+=y;
    if(x>=mod)x-=mod;
    return x;
}
int T,n,k,dp[maxn][505],S[505][505],fact[505];
vector<int>g[maxn];
void init(int n=500)
{
    S[0][0]=1;
    for(int i=1;i<=n;i++)
    {
        S[i][i]=1;
        for(int j=1;j<i;j++)
            S[i][j]=add(S[i-1][j-1],mul(S[i-1][j],j));
    }
    fact[0]=1;
    for(int i=1;i<=n;i++)fact[i]=mul(i,fact[i-1]);
}
void dfs1(int u,int fa)
{
    dp[u][0]=1;
    for(int i=1;i<=k;i++)dp[u][i]=0;
    for(int i=0;i<g[u].size();i++)
    {
        int v=g[u][i];
        if(v==fa)continue;
        dfs1(v,u);
        dp[u][0]=add(dp[u][0],dp[v][0]);
        for(int j=1;j<=k;j++)
            dp[u][j]=add(dp[u][j],add(dp[v][j],dp[v][j-1]));
    }
}
void dfs2(int u,int fa)
{
    if(fa)
    {
        for(int j=k;j>=0;j--)
        {
            dp[u][j]=dp[fa][j];
            if(j>=1)dp[u][j]=add(dp[u][j],add(dp[fa][j-1],mul(dp[u][j-1],mod-2)));
            if(j>=2)dp[u][j]=add(dp[u][j],mod-dp[u][j-2]);
        }
    }
    for(int i=0;i<g[u].size();i++)
    {
        int v=g[u][i];
        if(v==fa)continue;
        dfs2(v,u);
    }
}
int main()
{
    init();
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&k);
        for(int i=1;i<=n;i++)g[i].clear();
        for(int i=1;i<n;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            g[u].push_back(v),g[v].push_back(u);
        }
        dfs1(1,0);
        dfs2(1,0);
        for(int i=1;i<=n;i++)
        {
            int ans=0;
            for(int j=1;j<=k;j++)
                ans=add(ans,mul(mul(S[k][j],fact[j]),dp[i][j]));
            printf("%d\n",ans); 
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值