Description
给出一棵 n n 个节点的树,边权为一,求
Input
第一行一整数 T T 表示用例组数,每组用例首先输入两个整数,之后 n−1 n − 1 行每行两个整数表示一条树边
(1≤T≤5,1≤n≤50000,1≤k≤500) ( 1 ≤ T ≤ 5 , 1 ≤ n ≤ 50000 , 1 ≤ k ≤ 500 )
Output
输出 ∑u,vdist(u,v)k ∑ u , v d i s t ( u , v ) k ,结果模 10007 10007
Sample Input
1
5 3
1 2
2 3
3 4
4 5
Sample Output
100
37
18
37
100
Solution
简记
du,v=dis(u,v)
d
u
,
v
=
d
i
s
(
u
,
v
)
,首先给出恒等式
nk=∑i=1kAin⋅S(k,i)
n
k
=
∑
i
=
1
k
A
n
i
⋅
S
(
k
,
i
)
,其中
nk
n
k
可以表示将
k
k
个不同的小球放入个不同的盒子的方案数,而这个方案数就等于从
n
n
个盒子选个盒子非空,然后将
k
k
个不同小球放入这个不同的盒子里的方案数,后者即为第二类斯特林数
S(k,i)
S
(
k
,
i
)
,故可以对答案进行化简
记 dp[u][i]=∑v=1nCidu,v d p [ u ] [ i ] = ∑ v = 1 n C d u , v i ,只要求出 dp[u][i] d p [ u ] [ i ] 即可 O(k) O ( k ) 得到固定 u u 点的答案
不妨以为树根,记
t(u)
t
(
u
)
表示以
u
u
为根节点的子树,首先可以一遍树形得到
f[u][i]=∑v∈t(u)Cidu,v
f
[
u
]
[
i
]
=
∑
v
∈
t
(
u
)
C
d
u
,
v
i
,这是由于经典等式
Cmn=Cmn−1+Cm−1n−1
C
n
m
=
C
n
−
1
m
+
C
n
−
1
m
−
1
,且对于
u
u
的儿子节点的子树中一点
w
w
有,故
Cidu,w=Cidv,w+Ci−1dv,w
C
d
u
,
w
i
=
C
d
v
,
w
i
+
C
d
v
,
w
i
−
1
,进而有
注意到 dp[1][i]=f[1][i] d p [ 1 ] [ i ] = f [ 1 ] [ i ] ,之后再一遍树形 DP D P ,在已知 u u 节点父亲节点的后来求 dp[u][i] d p [ u ] [ i ] ,注意到对于 u u 子树中一点有 dfa,v=du,v+1 d f a , v = d u , v + 1 ,而对于 u u 子树外一点有 dfa,v=du,v−1 d f a , v = d u , v − 1 ,故有
总时间复杂度 O(Tnk) O ( T n k )
Code
#include<cstdio>
#include<vector>
using namespace std;
#define maxn 50005
#define mod 10007
int mul(int x,int y)
{
int z=x*y;
return z-z/mod*mod;
}
int add(int x,int y)
{
x+=y;
if(x>=mod)x-=mod;
return x;
}
int T,n,k,dp[maxn][505],S[505][505],fact[505];
vector<int>g[maxn];
void init(int n=500)
{
S[0][0]=1;
for(int i=1;i<=n;i++)
{
S[i][i]=1;
for(int j=1;j<i;j++)
S[i][j]=add(S[i-1][j-1],mul(S[i-1][j],j));
}
fact[0]=1;
for(int i=1;i<=n;i++)fact[i]=mul(i,fact[i-1]);
}
void dfs1(int u,int fa)
{
dp[u][0]=1;
for(int i=1;i<=k;i++)dp[u][i]=0;
for(int i=0;i<g[u].size();i++)
{
int v=g[u][i];
if(v==fa)continue;
dfs1(v,u);
dp[u][0]=add(dp[u][0],dp[v][0]);
for(int j=1;j<=k;j++)
dp[u][j]=add(dp[u][j],add(dp[v][j],dp[v][j-1]));
}
}
void dfs2(int u,int fa)
{
if(fa)
{
for(int j=k;j>=0;j--)
{
dp[u][j]=dp[fa][j];
if(j>=1)dp[u][j]=add(dp[u][j],add(dp[fa][j-1],mul(dp[u][j-1],mod-2)));
if(j>=2)dp[u][j]=add(dp[u][j],mod-dp[u][j-2]);
}
}
for(int i=0;i<g[u].size();i++)
{
int v=g[u][i];
if(v==fa)continue;
dfs2(v,u);
}
}
int main()
{
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)g[i].clear();
for(int i=1;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
g[u].push_back(v),g[v].push_back(u);
}
dfs1(1,0);
dfs2(1,0);
for(int i=1;i<=n;i++)
{
int ans=0;
for(int j=1;j<=k;j++)
ans=add(ans,mul(mul(S[k][j],fact[j]),dp[i][j]));
printf("%d\n",ans);
}
}
return 0;
}