HDU 6391 Lord Li's problem(dp+组合数学)

202 篇文章 1 订阅
190 篇文章 1 订阅

Description

对于 0 0 ~2n1这些数字中二进制表示只有三个 1 1 的数字集,问从中选取一个k子集与 S S 异或结果为T的方案数

Input

多组用例,每组用例首先输入两个整数 n,k n , k ,之后输入两个长度为 n n 01串为 S,T S , T 的二进制表示,以 0 0 0   0 结束输入

(1n40,0kmin(20,C3n)) ( 1 ≤ n ≤ 40 , 0 ≤ k ≤ m i n ( 20 , C n 3 ) )

Output

输出方案数,结果模 19260817 19260817

Sample Input

4 3
1101
1001
3 1
101
010
5 3
11010
10111
0 0

Sample Output

Case #1: 1
Case #2: 1
Case #3: 6

Solution

问题转化为用不同的 k k 个二进制表示只有三个1 n n 位二进制数异或得到S^ T T ,假设S^ T T m个位置为 1 1 ,显然方案数只和m有关,与这 m m 1的具体位置无关,那么我们只需使得这 k k 个数字异或结果的后m位为 1 1 ,前nm位为 0 0 即可,以dp[i][j]表示用 i i 个不同的数字异或结果为后j位为 1 1 ,前nj位为 0 0 的方案数,考虑第i个数的贡献,有四种情况

1 1 .3 1 1 全部在之前为0的位,也即从当前的 j j 1中找 3 3 个位置放置当前数字的3 1 1 ,故有转移

dp[i][j]+=Cj3dp[i1][j3]

2 2 .2 1 1 在之前为0的位, 1 1 1在之前为 1 1 的位,也即从当前的j 1 1 中找2个位置放置当前数字产生的 2 2 1,从当前的 nj n − j 1 1 里找1个位置放置当前数字消除的 1 1 1,故有转移

dp[i][j]+=C2jC1njdp[i1][j1] d p [ i ] [ j ] + = C j 2 ⋅ C n − j 1 ⋅ d p [ i − 1 ] [ j − 1 ]

3 3 .1 1 1 在之前为0的位, 2 2 1在之前为 1 1 的位,也即从当前的j 1 1 中找1个位置放置当前数字产生的 1 1 1,从当前的 nj n − j 1 1 里找2个位置放置当前数字消除的 2 2 1,故有转移
dp[i][j]+=C1jC2njdp[i1][j+1] d p [ i ] [ j ] + = C j 1 ⋅ C n − j 2 ⋅ d p [ i − 1 ] [ j + 1 ]

4 4 .3 1 1 全部在之前的1位,也即从当前的 nj n − j 0 0 3个位置放置当前数字消除的 3 3 1,故有转移
dp[i][j]+=C3njdp[i1][j+3] d p [ i ] [ j ] + = C n − j 3 ⋅ d p [ i − 1 ] [ j + 3 ]

首先注意到此时我们放置的第 i i 个数字可能会与前面的i1个数字中的某个重复,故有
dp[i][j]=(C3n(i2))dp[i2][j] d p [ i ] [ j ] − = ( C n 3 − ( i − 2 ) ) ⋅ d p [ i − 2 ] [ j ]

表示前 i2 i − 2 个不同的数字已经使得后 j j 位为1,前 nj n − j 位为 0 0 ,而第i个数字重复出现了两次,选取一个和前 i2 i − 2 个数字不同的数字均可

其次我们不应考虑数字的前后顺序,故有

dp[i][j]=dp[i][j]i d p [ i ] [ j ] = d p [ i ] [ j ] i

单组用例时间复杂度 O(nk) O ( n k ) ,总时间复杂度 O(Tnk) O ( T n k ) ,注意到可以预处理每个长度的答案,对于每组用例只需统计 m m 即可,时间复杂度O(n2k+Tn)

Code

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
#define mod 19260817
int mul(int x,int y)
{
    ll z=1ll*x*y;
    return z-z/mod*mod;
}
int add(int x,int y)
{
    x+=y;
    if(x>=mod)x-=mod;
    return x;
}
int n,k,inv[22],C[44][44],dp[44][22][44];
char a[44],b[44];
void init()
{
    inv[1]=1;
    for(int i=2;i<=20;i++)inv[i]=mul(mod-mod/i,inv[mod%i]);
    for(int i=0;i<=40;i++)
    {
        C[i][0]=C[i][i]=1;
        for(int j=1;j<i;j++)C[i][j]=add(C[i-1][j-1],C[i-1][j]);
    }
    for(int n=1;n<=40;n++)
    {
        dp[n][0][0]=1;
        for(int i=1;i<=min(20,C[n][3]);i++)
            for(int j=0;j<=n;j++)
            {
                if(j+1<=n)dp[n][i][j]=add(dp[n][i][j],mul(dp[n][i-1][j+1],mul(C[j][1],C[n-j][2])));
                if(j+3<=n)dp[n][i][j]=add(dp[n][i][j],mul(dp[n][i-1][j+3],C[n-j][3]));
                if(j>=1)dp[n][i][j]=add(dp[n][i][j],mul(dp[n][i-1][j-1],mul(C[j][2],C[n-j][1])));
                if(j>=3)dp[n][i][j]=add(dp[n][i][j],mul(dp[n][i-1][j-3],C[j][3]));
                if(i>=2)dp[n][i][j]=add(dp[n][i][j],mod-mul(dp[n][i-2][j],add(C[n][3],mod-(i-2))));
                dp[n][i][j]=mul(dp[n][i][j],inv[i]);
            }
    }
}
int main()
{
    int Case=1;
    init();
    while(~scanf("%d%d",&n,&k),n||k)
    {
        int m=0;
        scanf("%s%s",a,b);
        for(int i=0;i<n;i++)m+=(a[i]-'0')^(b[i]-'0');
        printf("Case #%d: %d\n",Case++,dp[n][k][m]);
    }
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值