Description
给出一个长度为 N = 2 n N=2^n N=2n的 01 01 01串 s s s,做 n n n次操作,每次操作选取逻辑与、逻辑或、逻辑异或三种操作之一,将 s s s串相邻两位运算之后的结果组成一个新的串,显然新串串长是原先的一般, n n n次后 s s s串只有一位,所有可能的操作方案有 3 n 3^n 3n种,问有多少种操作方案使得最后结果是 1 1 1
Input
第一行输入一整数 n n n,之后输入一长度为 2 n 2^n 2n的 01 01 01串 s ( 1 ≤ n ≤ 18 ) s(1\le n\le 18) s(1≤n≤18)
Output
输出使得操作后结果为 1 1 1的方案数
Sample Input
2
1001
Sample Output
4
Solution
直接暴搜, d p dp dp预处理 n ≤ 4 n\le 4 n≤4的所有结果,搜索到 n = 4 n=4 n=4时直接累加答案即可
Code
#include<cstdio>
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
int Solve(int x,int sta)
{
int res=0,a[20];
while(x)
{
a[res++]=x%2;
x/=2;
}
if(res&1)a[res++]=0;
int ans=0;
if(sta==0)
for(int i=res-1;i>=0;i-=2)ans=ans*2+(a[i]&a[i-1]);
else if(sta==1)
for(int i=res-1;i>=0;i-=2)ans=ans*2+(a[i]|a[i-1]);
else
for(int i=res-1;i>=0;i-=2)ans=ans*2+(a[i]^a[i-1]);
return ans;
}
int deal(string s)
{
int x=0;
for(int i=0;i<s.size();i++)x=2*x+s[i];
return x;
}
int ans,dp[(1<<16)+5][5];
void dfs(string s,int n)
{
if(n==4)
{
ans+=dp[deal(s)][4];
return ;
}
string t;
t.clear();
for(int i=0;i<s.size();i+=2)t.push_back(s[i]&s[i+1]);
dfs(t,n-1);
t.clear();
for(int i=0;i<s.size();i+=2)t.push_back(s[i]|s[i+1]);
dfs(t,n-1);
t.clear();
for(int i=0;i<s.size();i+=2)t.push_back(s[i]^s[i+1]);
dfs(t,n-1);
}
int main()
{
int n;
string s;
cin>>n>>s;
for(int i=0;i<s.size();i++)s[i]-='0';
dp[1][0]=1;
for(int i=1;i<(1<<16);i++)
for(int j=1;j<=4;j++)
dp[i][j]=dp[Solve(i,0)][j-1]+dp[Solve(i,1)][j-1]+dp[Solve(i,2)][j-1];
if(n<=4)printf("%d\n",dp[deal(s)][n]);
else
{
ans=0;
dfs(s,n);
printf("%d\n",ans);
}
return 0;
}