算法:State Compression

上周参加了学校的acm比赛,只做出两道水题,看了答案发现其中有两道题用到了状态压缩,于是就去学习了一波。

状态压缩

状态压缩就是将题目的模型抽象成状态的集合,如果每个对象只有两个状态且对象数量较少,可以用0和1分别代表这两种状态,用一个二进制数可以表示所有对象的状态,其中位数等于对象的个数。状态压缩往往与动态规划联系起来,下面以LeetCode的一道题作为例子。

Can I Win

问题

你和小伙伴正在玩一个游戏,首先有1至n共n个数,你们轮流取一个数并对所有已经取出的数求和,如果大于m,那么最后取数的人获胜,取出的数不能重复。给出n和m,如果你先取数,并且双方均采取最佳策略,判断你最终能否获胜。

思路

首先这是一个双方博弈的过程,由于双方都采取最佳策略,那么只有在无论对方如何操作你都能获胜的情况下才算必胜。然后因为取出的数不能重复,所以需要存储这n个数的使用情况。如果用0表示未取出,1表示已取出,那么就可以用一个二进制数来表示取数状态,即状态压缩。最后用动态规划和深度优先搜索来求解。需要注意两种特殊情况:如果m小于或等于1,那么你必胜;如果m大于所有数的和,那么双方必败。

代码

// 判断n的第i位是否为1
bool is1(int n, int i) {
	return (n & 1 << i) != 0;
}

// 把n的第i位设置为1
int set1(int n, int i) {
    return n | (1 << i);
}

// 表示每种状态的胜负情况,0表示未确定,1表示必胜,-1表示必败
int dp[1 << 20] = {};

// m为最大数,t为求和目标,k为当前状态
bool dfs(int m, int t, int k) {
    if (t <= 0) return false;  // 若求和目标小于或等于0,说明前一个回合对方已经获胜,因此己方必败
    if (dp[k] != 0) return dp[k] > 0;  // 己方的胜负情况已确定

    for (int i = 0; i < m; ++i) {
	    // 若状态中某一位不为1,说明对应的数未取出
	    // 取出一个未取出的数,求和目标减去这个数,然后判断对方的胜负情况,如果对方必败,那么己方必胜
        if (!is1(k, i) && !dfs(m, t-i-1, set1(k, i))) {
            dp[k] = 1;
            return true;
        }
    }
    
    // 如果无论如何对方必胜,那么己方必败
    dp[k] = -1;
    return false;
}

bool canIWin(int maxChoosableInteger, int desiredTotal) {
    if (desiredTotal <= 1) return true;  // 如果求和目标小于或等于1,你必胜
    int sum = maxChoosableInteger * (maxChoosableInteger+1) / 2;
    if (sum < desiredTotal) return false;  // 如果求和目标大于所有数的和,双方必败
    return dfs(maxChoosableInteger, desiredTotal, 0);
}

总结

状态压缩用二进制数表示状态,然后与动态规划结合求解,使复杂的问题简单化。虽然思路比较复杂,但非常有用,我还需要多做练习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值