Newcoder 147 H.Prefix Sum(组合数学+BIT)

186 篇文章 0 订阅
54 篇文章 0 订阅

Description

对于一个 ( k + 1 ) ⋅ n (k+1)\cdot n (k+1)n的矩阵,行编号从 0 0 0~ k k k,列编号从 1 1 1 n n n,每次修改第一行元素,之后通过递推式
a i , 1 = a i − 1 , 1 , a i , j = a i , j − 1 + a i − 1 , j , j ≥ 2 a_{i,1}=a_{i-1,1},a_{i,j}=a_{i,j-1}+a_{i-1,j},j\ge 2 ai,1=ai1,1,ai,j=ai,j1+ai1,j,j2
得到整个矩阵 a i , j a_{i,j} ai,j,初始状态 a 0 , 1 = . . . = a 0 , n = 0 a_{0,1}=...=a_{0,n}=0 a0,1=...=a0,n=0,给出 m m m次操作,操作分两种:

0   x   y : 0\ x\ y: 0 x y: a 0 , x a_{0,x} a0,x加上 y y y

1   x : 1\ x: 1 x:查询 a k , x a_{k,x} ak,x

Input

第一行输入三个整数 n , m , k n,m,k n,m,k,之后 m m m行每行一个操作

( 1 ≤ n , m ≤ 1 0 5 , 1 ≤ k ≤ 40 , 1 ≤ x ≤ n , 1 ≤ y &lt; 1 0 9 + 7 ) (1\le n,m\le 10^5,1\le k\le 40,1\le x\le n,1\le y&lt;10^9+7) (1n,m105,1k40,1xn,1y<109+7)

Output

对于每次查询操作,输出 a k , x a_{k,x} ak,x,结果模 1 0 9 + 7 10^9+7 109+7

Sample Input

4 11 3
0 1 1
0 3 1
1 1
1 2
1 3
1 4
0 3 1
1 1
1 2
1 3
1 4

Sample Output

1
3
7
13
1
3
8
16

Solution

简单分析可知 a [ k ] [ x ] = ∑ i = 1 x C x − i + k − 1 k − 1 ⋅ a [ 0 ] [ i ] a[k][x]=\sum\limits_{i=1}^xC_{x-i+k-1}^{k-1}\cdot a[0][i] a[k][x]=i=1xCxi+k1k1a[0][i],考虑恒等式 C n + m x = ∑ i = 0 x C n i C m x − i C_{n+m}^x=\sum\limits_{i=0}^xC_n^iC_m^{x-i} Cn+mx=i=0xCniCmxi,进而有
a [ k ] [ x ] = ∑ i = 1 x ∑ j = 0 k − 1 C x j C k − 1 − i k − 1 − j a [ 0 ] [ x ] = ∑ j = 0 k − 1 C x j ∑ i = 1 x C k − 1 − i k − 1 − j a [ 0 ] [ i ] a[k][x]=\sum\limits_{i=1}^x\sum\limits_{j=0}^{k-1}C_x^jC_{k-1-i}^{k-1-j}a[0][x]=\sum\limits_{j=0}^{k-1}C_x^j\sum\limits_{i=1}^xC_{k-1-i}^{k-1-j}a[0][i] a[k][x]=i=1xj=0k1CxjCk1ik1ja[0][x]=j=0k1Cxji=1xCk1ik1ja[0][i]
显然第二个求和只是一个对 i i i的前缀求和,故可以用 k k k个树状数组维护 C k − 1 − i k − 1 − j a [ 0 ] [ i ] C_{k-1-i}^{k-1-j}a[0][i] Ck1ik1ja[0][i]的前缀和,单次查询复杂度 O ( k l o g n ) O(klog_n) O(klogn),总时间复杂度 O ( k m l o g n ) O(kmlog_n) O(kmlogn)

Code

#include<cstdio>
using namespace std;
typedef long long ll;
#define maxn 100005
#define mod 1000000007
int mul(int x,int y)
{
	ll z=1ll*x*y;
	return z-z/mod*mod;
}
int add(int x,int y)
{
	x+=y;
	if(x>=mod)x-=mod;
	return x;
}
int inv[maxn];
void init(int n=1e5)
{
	inv[1]=1;
	for(int i=2;i<=n;i++)inv[i]=mul(mod-mod/i,inv[mod%i]);
}
struct BIT 
{
	#define lowbit(x) (x&(-x))
	int b[maxn],n;
	void init(int _n)
	{
		n=_n;
		for(int i=1;i<=n;i++)b[i]=0;
	}
	void update(int x,int v)
	{
		while(x<=n)
		{
			b[x]=add(b[x],v);
			x+=lowbit(x);
		}
	}
	int query(int x)
	{
		int ans=0;
		while(x)
		{
			ans=add(ans,b[x]);
			x-=lowbit(x);
		}
		return ans;
	}
}bit[40];
int C(int n,int m)
{
	n=add(n,mod);
	int ans=1;
	for(int i=1;i<=m;i++)
	{
		int temp=add(n,mod-(m-i));
		ans=mul(ans,mul(temp,inv[i]));
	}
	return ans;
}
int main()
{
	init();
	int n,m,k;
	scanf("%d%d%d",&n,&m,&k);
	for(int i=0;i<k;i++)bit[i].init(n);
	while(m--)
	{
		int op,x,y;
		scanf("%d%d",&op,&x);
		if(!op)
		{
			scanf("%d",&y);
			for(int i=0;i<k;i++)bit[i].update(x,mul(C(k-x-1,k-i-1),y));
		}
		else
		{
			int ans=0;
			for(int i=0;i<k;i++)ans=add(ans,mul(C(x,i),bit[i].query(x)));
			printf("%d\n",ans);
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值