Description
给你一个连通无向图,保证每个点最多属于一个简单环,每个点度数最多为 3 3 3,求这个图有多少“手铐图形个数”
其中“手铐图形个数”,定义为三元组 ( x , y , S ) (x,y,S) (x,y,S),其中 x x x和 y y y表示图上的两个点, S S S表示一条 x x x到 y y y的简单路径,而且必须满足:
1. x x x和 y y y分别在两个不同的简单环上
2. x x x所在的简单环与路径 S S S的所有交点仅有 x , y x,y x,y所在的简单环与路径 S S S的所有交点仅有 y y y。
$ (x,y,S) 与 与 与(y,x,S)$算同一个手铐
如果你无法理解,可以参考样例。
Input
第一行两个数 n n n和 m m m
之后 m m m行,每行两个数 x , y x,y x,y表示 x x x和 y y y之间有一条边。
( n ≤ 1 0 6 , m ≤ 2 ⋅ 1 0 6 ) (n\le 10^6,m\le 2\cdot 10^6) (n≤106,m≤2⋅106)
Output
输出一个数,表示手铐的个数对 19260817 19260817 19260817取模的结果
Sample Input
11 12
1 2
2 3
3 4
4 5
5 1
4 6
6 7
7 8
8 9
9 10
10 11
11 7
Sample Output
1
Solution
t a r j a n tarjan tarjan求出边双连通分量之后该连通无向图即转化为一棵树,且任意两个点数超过 1 1 1的块构成一个“手铐”,但是注意到假设两个点数超过 1 1 1的块之间有 x x x个点数超过 1 1 1的块,那么两个块之间的路径有 2 x 2^x 2x种选择
考虑 u u u的所有子树中点数超过 1 1 1的块走到 u u u的方案数 d p [ u ] dp[u] dp[u],以此考虑 u u u的儿子,对于第一个儿子 v v v,若 u u u也是点大于 1 1 1的块,那么第一个儿子中点数大于 1 1 1的点到 u u u构成的手铐对答案的贡献就是 d p [ v ] dp[v] dp[v],对于其他儿子,可以经过 u u u点与之前考虑的儿子中点数大于 1 1 1的点构成手铐,此时对答案的贡献就是 d p [ u ] ⋅ d p [ v ] dp[u]\cdot dp[v] dp[u]⋅dp[v],而对于 d p [ u ] dp[u] dp[u]的维护,如果 u u u点数大于 1 1 1,那么 d p [ u ] + = 2 ⋅ d p [ v ] dp[u]+=2\cdot dp[v] dp[u]+=2⋅dp[v],否则 d p [ u ] + = d p [ v ] dp[u]+=dp[v] dp[u]+=dp[v],时间复杂度 O ( n + m ) O(n+m) O(n+m)
Code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
#define maxn 1000005
#define maxm 4000005
struct Edge
{
int to,next;
bool flag;//标记是否是桥
}edge[maxm];
int head[maxn],tot;
int low[maxn],dfn[maxn],stack[maxn],belong[maxn];//belong数组的值是1~block
int Index,top;
int block;//边双连通块数
bool instack[maxn];
int bridge;//桥的数目
int n,m;
void add_edge(int u,int v)
{
edge[tot].to=v,edge[tot].next=head[u],edge[tot].flag=0;
head[u]=tot++;
}
void Tarjan(int u,int pre)
{
int v;
low[u]=dfn[u]=++Index;
stack[top++]=u;
instack[u]=1;
for(int i=head[u];~i;i=edge[i].next)
{
v=edge[i].to;
if(v==pre)continue;
if(!dfn[v])
{
Tarjan(v,u);
if(low[u]>low[v])low[u]=low[v];
if(low[v]>dfn[u])
{
bridge++;
edge[i].flag=1;
edge[i^1].flag=1;
}
}
else if(instack[v]&&low[u]>dfn[v])
low[u]=dfn[v];
}
if(low[u]==dfn[u])
{
block++;
do
{
v=stack[--top];
instack[v]=0;
belong[v]=block;
}
while(v!=u);
}
}
void init()
{
tot=0;
memset(head,-1,sizeof(head));
}
void solve()
{
memset(dfn,0,sizeof(dfn));
memset(instack,0,sizeof(instack));
Index=top=block=0;
Tarjan(1,0);
}
#define mod 19260817
int add(int x,int y)
{
x+=y;
if(x>=mod)x-=mod;
return x;
}
int mul(int x,int y)
{
ll z=1ll*x*y;
return z-z/mod*mod;
}
vector<int>g[maxn];
int num[maxn],dp[maxn],ans;
void dfs(int u,int fa)
{
int t=1;
if(num[u]>1)dp[u]=1,t=2;
int first=1;
for(int i=0;i<g[u].size();i++)
{
int v=g[u][i];
if(v==fa)continue;
dfs(v,u);
if(!first)ans=add(ans,mul(dp[u],dp[v]));
else if(t==2)ans=add(ans,dp[v]);
dp[u]=add(dp[u],mul(t,dp[v]));
first=0;
}
}
int main()
{
init();
scanf("%d%d",&n,&m);
while(m--)
{
int u,v;
scanf("%d%d",&u,&v);
add_edge(u,v),add_edge(v,u);
}
solve();
for(int i=1;i<=n;i++)num[belong[i]]++;
int cnt=0;
for(int i=1;i<=block;i++)
if(num[i]>1)cnt++;
for(int u=1;u<=n;u++)
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(belong[u]!=belong[v])g[belong[u]].push_back(belong[v]);
}
ans=0;
for(int i=1;i<=block;i++)
if(num[i]>1)
{
dfs(i,0);
break;
}
printf("%d\n",ans);
return 0;
}