077织物污渍瑕疵检测

本文介绍了卷积神经网络(如AlexNet、DenseNet等)在分类任务中的应用,以及目标检测(如YOLOv3、YOLOv5)和图像分割(如Unet、mask-rcnn)的代表性模型。同时提供了代码下载资源和可视化工具的示例,展示了从数据处理到模型训练和应用的完整流程。
摘要由CSDN通过智能技术生成

​卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型

目标检测一般是yolov3、yolov4、yolov5、yolox、PSPnet、faster_rcnn、SDD等

图像分割一般是Unet、mask-rcnn、PSPnet、yolov5-segment等

代码下载和视频演示地址:

077织物污渍瑕疵检测_哔哩哔哩_bilibili

效果图如下:

 代码所有文件:

运行01makeTxt.py会将data文件下的图片路径及标签保存在txt文本内,

运行02train.py会对图片进行读取并训练模型保存在runs文件下,

运行03detector_photo.py会对单张图片进行预测,

运行04pyqt界面.py可以展示一个pyqt的可视化交互界面,通过点击按钮加载感兴趣的图片进行识别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值