计算机图形学----采样和锯齿

本文详细探讨了走样现象及其原因,主要源于信号变化速率超过采样速率。介绍了反走样方法,包括对三角形进行模糊处理的预过滤步骤,以及多采样抗锯齿(MSAA)技术。通过滤波、傅里叶变换和采样理论,解释了如何减少图像失真和提高图像质量。同时,展示了不同滤波类型如高通和低通滤波的效果,并阐述了它们在反走样过程中的应用。最后,提到了MSAA如何通过细化像素采样来改善图像边缘的抗锯齿效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

采样产生的问题

走样
在这里插入图片描述
摩尔纹
在这里插入图片描述
本质上,走样的原因是,信号变化太快,采样的速度跟不上变化的速度。

反走样的方法:
先对三角形进行模糊,再进行采样。
在这里插入图片描述
反走样之前:
在这里插入图片描述
反走样之后:
在这里插入图片描述

频域

正弦函数和余弦函数
在这里插入图片描述
用周期(或者频率)定义余弦的变化快慢
在这里插入图片描述
傅里级数展开:
在这里插入图片描述
傅里叶变换:
在这里插入图片描述按照一定的频率采样,并且把采样点连起来。再把采样点连接起来
在这里插入图片描述
采样失真:
在这里插入图片描述

滤波

傅里叶变换:时域—>频域
右侧主要集中在低频,中间亮。
在这里插入图片描述
去掉一些频率的内容,就叫做滤波
下图滤波滤去掉低频的东西,这种滤波叫做高通滤波。高通滤波就是高频的信号可以通过。
在这里插入图片描述
低通滤波
在这里插入图片描述
中间段的频率留下:
在这里插入图片描述
中间段的频率留下:
在这里插入图片描述
滤波 = 平均 = 卷积
在这里插入图片描述
线性滤波:
在这里插入图片描述
step1:
在这里插入图片描述
step2:
在这里插入图片描述

在这里插入图片描述
时域上的平均,频域上的相乘
在这里插入图片描述
滤波的核:
在这里插入图片描述

采样

给一个原始的信号,乘以冲击函数。就可以得到采样的结果。采样就是重复原始信号的频谱。
在这里插入图片描述
采样频率和实际频率对不上,就是走样。
在这里插入图片描述

反走样

先做滤波(模糊),再做反走样。
在这里插入图片描述
先做滤波(模糊),再做反走样。
在这里插入图片描述
反走样:
在这里插入图片描述
如何将三角形边模糊:用一定大小的低通滤波器,进行滤波。
取一个小方块,也就是一个像素。
在这里插入图片描述
对每一个像素做卷积
在这里插入图片描述
在这里插入图片描述

MSAA

将一个小的像素点,再次划分成4*4的格子。
在这里插入图片描述
下图将像素再次划分:
在这里插入图片描述
将一个像素划分成四个格子:
在这里插入图片描述
在这里插入图片描述
计算三角形在像素的近似覆盖率。
在这里插入图片描述
在这里插入图片描述
msaa反走样前:
在这里插入图片描述
msaa反走样后:
在这里插入图片描述
其它抗锯齿的方法:
在这里插入图片描述
截图和公式来源闫令琪老师games101课程
感谢闫令琪老师为我们带来这么精彩的图形学课程
https://www.bilibili.com/video/BV1X7411F744?p=6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值